

Windows Azure
A case study on the cloud operating system by

Microsoft Corporation

S.Sharmili Priyadarsini

 2

 S.Sharmili Priyadarsini

 Windows Azure

A case study on the cloud operating system by Microsoft Corporation

 By

 S.Sharmili Priyadarsini

 Third year, CSE

 PSNA College of Engineering and Technology,

 Dindigul.

 3

 S.Sharmili Priyadarsini

Index

1. Introduction

2. What is cloud computing?

a) Features of cloud computing

b) Forms of cloud computing

c) Platform continuum

d) Aspects provided by cloud

3. Windows azure

4. Windows azure architecture

 Windows azure is a service

a) The compute service

b) The storage service

c) The fabric Windows services platform

 Windows services platform

a) Windows azure

b) Microsoft .NET services

C) Microsoft SQL services

d) Live services

 5. Building and deploying your first windows azure application

 Objectives

 Prerequisites

 Setup

 Using the code snippets

 Exercises

I.Building Your First Windows Azure Application

II.Deploying a Windows Azure Application

6.Summary

7. Glossary

8. References

 4

 S.Sharmili Priyadarsini

__

Introduction:
 Windows azure is a cloud operating system, developed by Microsoft Corporation.

 It provides various web services and enables the users to develop their own applications on

the cloud platform.

 Azure service platforms are Microsoft SQL services, Microsoft.NET services, Microsoft live

services, Microsoft sharepoint services, Microsoft CRM services.

 Azure platform provides computation, storage and management of resources.

What is Cloud Computing?
A virtualized computing platform that provides

 Infinite resources for running your applications–

 It leverages economies of scale to save you money by only requiring you to pay for what you

use.

Features of Cloud computing are

 Scalability

 Virtuality

 Availability

 Efficiency

 Flexibility

 Cost saving

Cloud computing exist as

 Software as service (SaaS)

 Infrastructure as service(Iaas)

 5

 S.Sharmili Priyadarsini

 Platform as service(PaaS)

Platform continuum:

New Aspects provided by cloud:

 Infinite computing resources, available on-demand

 No up-front commitment by cloud users

 Only pay for what you use, short term billing

Windows Azure:

 6

 S.Sharmili Priyadarsini

le storage with blobs, tables, and queues

-driven service lifecycle management

Windows Azure Architecture:

Running applications on machines in an Internet-accessible data center can bring plenty of

advantages. Yet wherever they run, applications are built on some kind of platform. For on-premises

applications, this platform usually includes an operating system, some way to store data, and

perhaps more. Applications running in the cloud need a similar foundation. The goal of Microsoft’s

Windows Azure is to provide this. Part of the larger Azure Services Platform, Windows Azure is a

platform for running Windows applications and storing data in the cloud.

Windows Azure runs on machines in Microsoft data centers. Rather than providing software that

Microsoft customers can install and run themselves on their own computers, Windows

Azure is a service: Customers use it to run applications and store data on Internet-accessible

machines owned by Microsoft. Those applications might provide services to businesses, to

consumers, or both. Here are some examples of the kinds of applications that might be built on

Windows Azure:

 An independent software vendor (ISV) could create an application that targets

business users, an approach that’s often referred to as Software as a Service (SaaS). ISVs

can use Windows Azure as a foundation for a variety of business-oriented SaaS

applications.

 An ISV might create a SaaS application that targets consumers. Windows Azure is designed

to support very scalable software, and so a firm that plans to target a large consumer

market might well choose it as a foundation for a new application.

 Enterprises might use Windows Azure to build and run applications that are used by

their own employees. While this situation probably won’t require the enormous scale

of a consumer-facing application, the reliability and manageability that Windows

Azure offers could still make it an attractive choice.

 7

 S.Sharmili Priyadarsini

Fig: In the CTP version, Windows Azure applications can consist of Web role instances and/or Worker

role instances, each of which runs in its own style of virtual machine.

1. THE COMPUTE SERVICE:
The Windows Azure Compute service can run many different kinds of applications. A primary goal of

this platform, however, is to support applications that have a very large number of simultaneous

users. (In fact, Microsoft has said that it will build its own SaaS applications on Windows Azure,

which sets the bar high.) Reaching this goal by scaling up—running on bigger and bigger machines—

isn’t possible. Instead, Windows Azure is designed to support applications that scale out, running

multiple copies of the same code across many commodity servers.

To allow this, a Windows Azure application can have multiple instances, each executing in its own

virtual machine (VM). These VMs run 64-bit Windows Server 2008, and they’re provided by a

hypervisor (based on Hyper-V) that’s been modified for use in Microsoft’s cloud. To run an

application, a developer accesses the Windows Azure portal through her Web browser, signing in

with a Windows Live ID. She then chooses whether to create a hosting account for running

applications, a storage account for storing data, or both.

Once the developer has a hosting account, she can upload her application, specifying how many

instances the application needs. Windows Azure then creates the necessary VMs and runs the

application. It’s important to note that a developer can’t supply her own VM image for Windows

Azure to run. Instead, the platform itself provides and maintains its own copy of Windows.

Developers focus solely on creating applications that run on Windows Azure.

In the initial incarnation of Windows Azure, known as the Community Technology Preview (CTP), two

different instance types are available for developers to use: Web role instances and Worker role

instances.

As its name suggests, a Web role instance can accept incoming HTTP or HTTPS requests. To allow

this, it runs in a VM that includes Internet Information Services (IIS) 7. Developers can create Web

role instances using ASP.NET, WCF, or another .NET technology that works with IIS. Developers can

also create applications in native code—using the .NET Framework isn’t required. (This means that

developers can upload and run other technologies as well, such as PHP.) And as Figure above shows,

 8

 S.Sharmili Priyadarsini

Windows Azure provides built-in hardware load balancing to spread requests across Web role

instances that are part of the same application.

By running multiple instances of an application, Windows Azure helps that application scale. To

accomplish this, however, Web role instances must be stateless. Any client-specific state should be

written to Windows Azure storage or passed back to the client after each request. Also, because the

Windows Azure load balancer doesn’t allow creating an affinity with a particular Web role instance,

there’s no way to guarantee that multiple requests from the same user will be sent to the same

instance.

Worker role instances aren’t quite the same as their Web role cousins. For example, they can’t

accept requests from the outside world. Their VMs don’t run IIS, and a Worker application can’t

accept any incoming network connections. Instead, a Worker role instance initiates its own requests

for input. It can read messages from a queue, for instance, as described later, and it can open

connections with the outside world. Given this more self-directed nature, Worker role instances can

be viewed as akin to a batch job or a Windows service.

A developer can use only Web role instances, only Worker role instances, or a combination of the

two to create a Windows Azure application. If the application’s load increases, he can use the

Windows Azure portal to request more Web role instances, more Worker role instances, or more of

both for his application. If the load decreases, he can reduce the number of running instances. To

shut down the application completely, the developer can shut down all of the application’s Web role

and Worker role instances.

The VMs that run both Web role and Worker role instances also run a Windows Azure agent, as

Figure above shows. This agent exposes a relatively simple API that lets an instance interact with the

Windows Azure fabric. For example, an instance can use the agent to write to a Windows Azure-

maintained log, send alerts to its owner via the Windows Azure fabric, and do a few more things.

To create Windows Azure applications, a developer uses the same languages and tools as for any

Windows application. She might write a Web role using ASP.NET and Visual Basic, for example, or

with WCF and C#. Similarly, she might create a Worker role in one of these .NET languages or directly

in C++ without the .NET Framework. And while Windows Azure provides add-ins for Visual Studio,

using this development environment isn’t required. A developer who has installed PHP, for example,

might choose to use another tool to write applications.

Both Web role instances and Worker role instances are free to access their VM’s local file system.

This storage isn’t persistent, however: When the instance is shut down, the VM and its local storage

go away.

Yet applications commonly need persistent storage that holds on to information even when they’re

not running. Meeting this need is the goal of the Windows Azure Storage service, described next.

2. THE STORAGE SERVICE:
Applications work with data in many different ways. Accordingly, the Windows Azure Storage service

provides several options. Figure below shows what’s in the CTP version of this technology.

 9

 S.Sharmili Priyadarsini

The simplest way to store data in Windows Azure storage is to use blobs. A blob contains binary

data, and as Figure below suggests, there’s a simple hierarchy: A storage account can have one or

more containers, each of which holds one or more blobs. Blobs can be big—up to 50 gigabytes

each—and they can also have associated metadata, such as information about where a JPEG

photograph was taken or who the singer is for an MP3 file.

Blobs are just right for some situations, but they’re too unstructured for others. To let applications

work with data in a more fine-grained way, Windows Azure storage provides tables. Don’t be misled

by the name: These aren’t relational tables. In fact, even though they’re called “tables”, the data

they hold is actually stored in a simple hierarchy of entities that contain properties. And rather than

using SQL, an application accesses a table’s data using the conventions defined by ADO.NET Data

Services. The reason for this apparently idiosyncratic approach is that it allows scale-out storage—

scaling by spreading data spread across many machines—much more effectively than would a

standard relational database. In fact, a single Windows Azure table can contain billions of entities

holding terabytes of data.

Blobs and tables are both focused on storing and accessing data. The third option in Windows Azure

storage, queues, has a quite different purpose. A primary function of queues is to provide a way for

Web role instances to communicate with Worker role instances. For example, a user might submit a

request to perform some compute-intensive task via a Web page implemented by a Windows Azure

Web role. The Web role instance that receives this request can write a message into a queue

describing the work to be done. A Worker role instance that’s waiting on this queue can then read

the message and carry out the task it specifies. Any results can be returned via another queue or

handled in some other way.

Regardless of how data is stored—in blobs, tables, or queues—all information held in Windows

Azure storage is replicated three times. This replication allows fault tolerance, since losing a copy

isn’t fatal. The system provides strong consistency, however, so an application that immediately

reads data it has just written is guaranteed to get back what it just wrote.

Windows Azure storage can be accessed by a Windows Azure application, by an application running

on-premises within some organization, or by an application running at a hoster. In all of these cases,

all three Windows Azure storage styles use the conventions of REST to identify and expose data, as

Figure below suggests. In other words, blobs, tables, and queues are all named using URIs and

accessed via standard HTTP operations. A .NET client might use the ADO.NET Data Services libraries

to do this, but it’s not required—an application can also make raw HTTP calls.

 10

 S.Sharmili Priyadarsini

Fig: storage in windows azure

THE FABRIC:
All Windows Azure applications and all of the data in Windows Azure Storage live in some Microsoft

data center. Within that data center, the set of machines dedicated to Windows Azure is organized

into a fabric. Figure below shows how this looks.

Fig: The fabric controller interacts with Windows Azure applications via the fabric agent.

As the figure shows, the Windows Azure Fabric consists of a (large) group of machines, all of which

are managed by software called the fabric controller. The fabric controller is replicated across a

group of five to seven machines, and it owns all of the resources in the fabric: computers, switches,

load balancers, and more. Because it can communicate with a fabric agent on every computer, it’s

also aware of every Windows Azure application in this fabric. (Interestingly, the fabric controller sees

Windows Azure Storage as just another application, and so the details of data management and

replication aren’t visible to the controller.)

This broad knowledge lets the fabric controller do many useful things. It monitors all running

applications, for example, giving it an up-to-the-minute picture of what’s happening in the fabric. It

manages operating systems, taking care of things like patching the version of Windows Server 2008

 11

 S.Sharmili Priyadarsini

that runs in Windows Azure VMs. It also decides where new applications should run, choosing

physical servers to optimize hardware utilization.

To do this, the fabric controller depends on a configuration file that is uploaded with each Windows

Azure application. This file provides an XML-based description of what the application needs: how

many Web role instances, how many Worker role instances, and more. When the fabric controller

receives this new application, it uses this configuration file to determine how many Web role and

Worker role VMs to create.

Once it’s created these VMs, the fabric controller then monitors each of them. If an application

requires five Web role instances and one of them dies, for example, the fabric controller will

automatically restart a new one. Similarly, if the machine a VM is running on dies, the fabric

controller will start a new instance of the Web or Worker role in a new VM on another machine,

resetting the load balancer as necessary to point to this new machine.

While this might change over time, the fabric controller in the Windows Azure CTP maintains a one-

to-one relationship between a VM and a physical processor core. Because of this, performance is

predictable—each application instance has its own dedicated processor core. It also means that

there’s no arbitrary limit on how long an application instance can execute. A Web role instance, for

example, can take as long as it needs to handle a request from a user, while a Worker role instance

can compute the value of pi to a million digits if necessary. Developers are free to do what they think

is best.

Windows service platforms:

-based environment for running applications and storing data

on servers in Microsoft data centers.

 12

 S.Sharmili Priyadarsini

-based and local

applications.

ata services in the cloud based on SQL Server.

applications and others. The Live Framework also allows synchronizing this data across

desktops and devices, finding and downloading applications, and more.

Building and deploying your first windows azure application:

Objectives
In this Hands-On Lab, you will learn how to:

Create applications in Windows Azure using web roles and worker roles

Use Windows Azure storage services including blobs, queues and tables

Deploy an application to Windows Azure

Prerequisites
The following is required to complete this hands-on lab:

Microsoft .NET Framework 3.5 SP1

Microsoft Visual Studio 2008 SP1 (or above)

Windows Azure Tools for Microsoft Visual Studio (November 2009)

SQL Server 2005 Express Edition (or above)

IIS 7 (with ASP.NET, WCF HTTP Activation)

Setup
For convenience, much of the code used in this hands-on lab is available as Visual Studio code

snippets. To check the prerequisites of the lab and install the code snippets:

1. Run the SetupLab.cmd script located in the lab's Source\Setup folder to check

dependencies and install any missing prerequisites.

2. Once you have verified every prerequisite, follow the instructions to install the code

snippets.

http://go.microsoft.com/fwlink/?LinkId=120550
http://msdn.microsoft.com/vstudio/products/
http://go.microsoft.com/fwlink/?LinkID=128752
http://www.microsoft.com/express/sql/download/

 13

 S.Sharmili Priyadarsini

Using the Code Snippets
With code snippets, you have all the code you need at your fingertips. The lab document will tell you

exactly when you can use them. For example,

To add this code snippet in Visual Studio, you simply place the cursor where you would like the code

to be inserted, start typing the snippet name (without spaces or hyphens), in this case

LabNameEx01RunmethodCS, watch as Intellisense picks up the snippet name, and then hit the TAB

key twice once the snippet you want is selected. The code will be inserted at the cursor location.

Figure 1

Hit TAB to select the highlighted snippet.

 14

 S.Sharmili Priyadarsini

Figure 2

Hit TAB again and the snippet will expand

To insert a code snippet using the mouse rather than the keyboard, right-click where you want the

code snippet to be inserted, select Insert Snippet followed by My Code Snippets and then pick the

relevant snippet from the list.

To learn more about Visual Studio IntelliSense Code Snippets, including how to create your own,

please see Creating and Using IntelliSense Code Snippets.

Exercises

Building Your First Windows Azure Application

Deploying a Windows Azure Application

 Building Your First Windows Azure

Application

In this exercise, you create a guest book application and execute it in the local development fabric.

For this purpose, you will use the Windows Azure Tools for Microsoft Visual Studio to create the

project using the Cloud Service project template. These tools extend Visual Studio 2008 to enable

the creation, building and running of Windows Azure services. You will continue to work with this

project throughout the remainder of the lab.

Note: To reduce typing, you can right-click where you want to insert source code, select Insert

Snippet, select My Code Snippets and then select the entry matching the current exercise step.

Task 1 – Creating the Visual Studio Project

In this task, you create a new Cloud Service project in Visual Studio.

1. Open Microsoft Visual Studio 2008 elevated as Administrator, from Start | All Programs |

Microsoft Visual Studio 2008, right-click Microsoft Visual Studio 2008 and choose Run as

Administrator. If the User Account Control dialog appears, click Continue.

2. From the File menu, choose New and then Project.

http://msdn.microsoft.com/en-us/library/ms165392.aspx

 15

 S.Sharmili Priyadarsini

3. In the New Project dialog, expand the language of your preference (Visual C# or Visual

Basic) in the Project types list and select Cloud Service.

4. In the Templates list, select Windows Azure Cloud Service. Enter the name “GuestBook”

and the solution name “Begin”, then set the location to the folder for the language of your

preference (Visual C# or Visual Basic) inside Ex01-BuildingYourFirstWindowsAzureApp in

the Source folder of the lab. Ensure Create directory for solution is checked and click OK to

create the project.

Figure 3

Creating a new Windows Azure Cloud Service project

5. In the New Cloud Service Project dialog, inside the Roles panel, expand the tab for the

language of your choice (Visual C# or Visual Basic), select ASP.NET Web Role from the list of

available roles and click the arrow (>) to add an instance of this role to the solution. Before

closing the dialog, select the new role in the right panel, click the pencil icon and rename the

role as GuestBook_WebRole. Click OK to create the cloud service solution.

 16

 S.Sharmili Priyadarsini

Figure 4

Assigning roles to the cloud service project (Visual C#)

Figure 5

Assigning roles to the cloud service project (Visual Basic)

6. In Solution Explorer, review the structure of the created solution.

 17

 S.Sharmili Priyadarsini

Figure 6

Solution Explorer showing the GuestBook application (C#)

Figure 7

Solution Explorer showing the GuestBook application (Visual Basic)

Note: The generated solution contains two separate projects. The first project, named

GuestBook, holds the configuration for the web and worker roles that compose the cloud

application. It includes the service definition file, ServiceDefinition.csdef, which contains

metadata needed by the Windows Azure fabric to understand the requirements of your

application, such as which roles are used, their trust level, the endpoints exposed by each

role, the local storage requirements and the certificates used by the roles. The service

definition also establishes configuration settings specific to the application. The service

configuration file, ServiceConfiguration.cscfg, specifies the number of instances to run for

each role and sets the value of configuration settings defined in the service definition file.

 18

 S.Sharmili Priyadarsini

This separation between service definition and configuration allows you to update the

settings of a running application by uploading a new service configuration file.

The Roles node in the cloud service project enables you to configure what roles the service

includes (Web, worker or both) as well as which projects to associate with these roles.

Adding and configuring roles through the Roles node will update the

ServiceDefinition.csdef and ServiceConfiguration.cscfg files.

The second project, named GuestBook_WebRole, is a standard ASP.NET Web Application

project template modified for the Windows Azure environment. It contains an additional

class that provides the entry point for the web role and contains methods to manage the

initialization, starting, and stopping of the role.

Task 2 – Creating a Data Model for Entities in Table Storage

The application stores guest book entries in Windows Azure Table Storage. The Table service offers

semi-structured storage in the form of tables that contain collections of entities. Entities have a

primary key and a set of properties, where a property is a name, typed-value pair.

In addition to the properties required by your model, every entity in the Table service has two key

properties: the PartitionKey and the RowKey. These properties together form the table's primary

key and uniquely identify each entity in the table. Every entity in the Table service also has a

Timestamp system property, which allows the service to keep track of when an entity was last

modified. This Timestamp field is intended for system use and should not be accessed by the

application. The Table Storage client API provides a TableServiceEntity class that defines the

necessary properties, which you can use as the base class for your entities.

The Table service API is compliant with the REST API provided by ADO.NET Data allowing you to use

the.NET Client Library for ADO.NET Data Services to work with data in the Table service using .NET

objects.

Although the Table service does not enforce any schema for tables, which makes it possible for two

entities in the same table to have different sets of properties, the GuestBook application uses a fixed

schema to store its data.

To use the.NET Client Library for ADO.NET Data Services to access the data in table storage, you

need to create a context class that derives from TableServiceContext, which itself derives from

DataServiceContext in ADO.NET Data Services. The Table Storage API allows applications to create

the tables that they use from these context classes. For this to happen, the context class must

expose each required table as a property of type IQueryable<SchemaClass>, where SchemaClass is

the class that models the entities stored in the table.

In this task, you model the schema of the entities stored by the GuestBook application and create a

context class to use ADO.NET Data Services to access the information in table storage. Finally, you

create an object that can be data bound to data controls in ASP.NET and implements the basic data

access operations: read, update, and delete.

 19

 S.Sharmili Priyadarsini

1. In Solution Explore, right-click the Begin solution, point to Add and select New Project.

2. In the New Project dialog, expand the language of your preference (Visual C# or Visual

Basic) in the Project types list, choose the Windows category, and select Class Library in the

Templates list. Enter the name “GuestBook_Data” and click OK.

Figure 8

Creating a class library for GuestBook entities (C#)

 20

 S.Sharmili Priyadarsini

Figure 9

Creating a class library for the GuestBook entities (Visual Basic)

3. Delete the default class file generated by the class library template. To do this, right-click

Class1.cs (for Visual C# Projects) or Class1.vb (for Visual Basic Projects) and choose Delete.

4. Add a reference to the.NET Client Library for ADO.NET Data Services in the GuestBook_Data

project. In Solution Explorer, right-click the GuestBook_Data project node, select Add

Reference, click the .NET tab, select the System.Data.Service.Client component and click

OK.

 21

 S.Sharmili Priyadarsini

Figure 10

Adding a reference to the System.Data.Service.Client component

5. Repeat the previous step to add a reference to the Windows Azure storage client API

assembly, this time choosing the Microsoft.WindowsAzure.StorageClient assembly instead.

6. Before you can store an entity in a table, you must first define its schema. To do this, right-

click GuestBook_Data in Solution Explorer and select Add New Item. In the Add New Item

dialog, choose the Code category and select Class in the Templates list. Enter the name

GuestBookEntry.cs (for Visual C# projects) or GuestBookEntry.vb (for Visual Basic projects)

and click Add.

 22

 S.Sharmili Priyadarsini

Figure 11

Adding the GuestBookEntry class (C#)

Figure 12

Adding the GuestBookEntry class (Visual Basic)

7. Open the GuestBookEntry.cs file (for Visual C# projects) or GuestBookEntry.vb file (for

Visual Basic projects). Add the following namespace declaration to import the types

contained in the Microsoft.WindowsAzure.StorageClient namespace.

 23

 S.Sharmili Priyadarsini

C#

using Microsoft.WindowsAzure.StorageClient;

Visual Basic

Imports Microsoft.WindowsAzure.StorageClient

8. Update the declaration of the GuestBookEntry class to make it public and derive from the

Microsoft.Samples.ServiceHosting.StorageClient.TableStorageEntity class.

C#

public class GuestBookEntry :

 Microsoft.WindowsAzure.StorageClient.TableServiceEntity

{

}

Visual Basic

Public Class GuestBookEntry

 Inherits Microsoft.WindowsAzure.StorageClient.TableServiceEntity

Note: TableServiceEntity is a class found in the Storage Client API. This class defines the

PartititionKey, RowKey and TimeStamp system properties required by every entity stored

in a Windows Azure table.

Together, the PartitionKey and RowKey define the DataServiceKey that uniquely identifies

every entity within a table.

9. Add a default constructor to the GuestBookEntry class that initializes its PartitionKey and

RowKey properties.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntry constructor – C#)

C#

public GuestBookEntry()

{

 PartitionKey = DateTime.UtcNow.ToString("MMddyyyy");

 // Row key allows sorting, so we make sure the rows come back in time

order.

 RowKey = string.Format("{0:10}_{1}", DateTime.MaxValue.Ticks -

DateTime.Now.Ticks, Guid.NewGuid());

}

 24

 S.Sharmili Priyadarsini

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntry constructor – Visual

Basic)

Visual Basic

Public Sub New()

 PartitionKey = DateTime.UtcNow.ToString("MMddyyyy")

 ' Row key allows sorting, so we make sure the rows come back in time

order.

 RowKey = String.Format("{0:10}_{1}", DateTime.MaxValue.Ticks -

DateTime.Now.Ticks, Guid.NewGuid())

End Sub

Note: To partition the data, the GuestBook application uses the date of the entry as the

PartitionKey, which means that there will be a separate partition for each day of guest

book entries. In general, you choose the value of the partition key to ensure load balancing

of the data across storage nodes.

The RowKey is a reverse DateTime field with a GUID appended for uniqueness. Tables

within partitions are sorted in RowKey order, so this will sort the tables into the correct

order to be shown on the home page, with the newest entry shown at the top.

10. To complete the definition of the the GuestBookEntry class, add properties for Message,

GuestName, PhotoUrl, and ThumbnailUrl to hold information about the entry.

 (Code Snippet – Introduction to Windows Azure - Ex01 Table Schema Properties – C#)

C#

public string Message { get; set; }

public string GuestName { get; set; }

public string PhotoUrl { get; set; }

public string ThumbnailUrl { get; set; }

(Code Snippet – Introduction to Windows Azure - Ex01 Table Schema Properties – Visual

Basic)

Visual Basic

Private privateMessage As String

Private privateGuestName As String

Private privatePhotoUrl As String

Private privateThumbnailUrl As String

Public Property Message() As String

 Get

 Return privateMessage

 End Get

 Set(ByVal value As String)

 privateMessage = value

 25

 S.Sharmili Priyadarsini

 End Set

End Property

Public Property GuestName() As String

 Get

 Return privateGuestName

 End Get

 Set(ByVal value As String)

 privateGuestName = value

 End Set

End Property

Public Property PhotoUrl() As String

 Get

 Return privatePhotoUrl

 End Get

 Set(ByVal value As String)

 privatePhotoUrl = value

 End Set

End Property

Public Property ThumbnailUrl() As String

 Get

 Return privateThumbnailUrl

 End Get

 Set(ByVal value As String)

 privateThumbnailUrl = value

 End Set

End Property

11. Save the GuestBookEntry.cs file (for Visual C# projects) or GuestBookEntry.vb file (for

Visual Basic projects).

12. Next, you need to create the context class required to access the GuestBook table using

ADO.NET Data Services. To do this, in Solution Explorer, right-click the GuestBook_Data

project, point to Add and select Class. In the Add New Item dialog, set the Name to

GuestBookDataContext.cs (for C# projects) or GuestBookDataContext.vb (for Visual Basic

projects) and click Add.

13. In the new class file, add the following namespace declarations to import the types

contained in the Microsoft.WindowsAzure and Microsoft.WindowsAzure.StorageClient

namespaces.

C#

using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.StorageClient;

Visual Basic

Imports Microsoft.WindowsAzure

 26

 S.Sharmili Priyadarsini

Imports Microsoft.WindowsAzure.StorageClient

14. Update the declaration of the new class to make it public, inherit the TableServiceContext

class and include a default constructor to initialize its base class with storage account

information.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookDataContext Class – C#)

C#

public class GuestBookDataContext : TableServiceContext

{

 public GuestBookDataContext(string baseAddress, StorageCredentials

credentials)

 : base(baseAddress, credentials)

 { }

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookDataContext Class – Visual

Basic)

Visual Basic

Public Class GuestBookDataContext

 Inherits TableServiceContext

 Public Sub New(ByVal baseAddress As String, ByVal credentials As

StorageCredentials)

 MyBase.New(baseAddress, credentials)

 End Sub

End Class

Note: You can find the TableServiceContext class in the storage client API. This class

derives from DataServiceContext in ADO.NET Data Services and manages the credentials

required to access your storage account as well as providing support for a retry policy for

operations.

15. Add a property to the GuestBookDataContext class to expose the GuestBookEntry table. To

do this, insert the following (highlighted) code into the class.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntry Property – C#)

C#

public class GuestBookDataContext : TableServiceContext

{

 ...

 public IQueryable<GuestBookEntry> GuestBookEntry

 {

 get

 27

 S.Sharmili Priyadarsini

 {

 return this.CreateQuery<GuestBookEntry>("GuestBookEntry");

 }

 }

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntry Property – Visual

Basic)

Visual Basic

Public Class GuestBookDataContext

 Inherits TableServiceContext

 ...

 Public ReadOnly Property GuestBookEntry() As IQueryable(Of

GuestBookEntry)

 Get

 Return Me.CreateQuery(Of GuestBookEntry)("GuestBookEntry")

 End Get

 End Property

End Class

Note: You can use the CreateTablesFromModel method in the CloudTableClient class to

create the tables needed by the application. When you supply a DataServiceContext (or

TableServiceContext) derived class to this method, it locates any properties that return an

IQueryable<T>, where the generic parameter T identifies the class that models the table

schema and creates a table in storage named after the property.

16. Finally, you need to implement an object that can be bound to data controls in ASP.NET. In

Solution Explorer, right-click GuestBook_Data and click Add New Item. In the Add New

Item dialog, select Code in the categories list and choose the Class template. Enter the

name GuestBookEntryDataSource.cs (for Visual C# projects) or

GuestBookEntryDataSource.vb (for Visual Basic projects) and click Add.

17. In the new class file, add the following namespace declarations to import the types

contained in the Microsoft.WindowsAzure and Microsoft.WindowsAzure.StorageClient

namespaces.

C#

using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.StorageClient;

Visual Basic

Imports Microsoft.WindowsAzure

Imports Microsoft.WindowsAzure.StorageClient

 28

 S.Sharmili Priyadarsini

18. In the GuestBookEntryDataSource class, make the class public and define member fields for

the data context and the storage account information, as shown below.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Fields –

C#)

C#

public class GuestBookEntryDataSource

{

 private static CloudStorageAccount storageAccount;

 private GuestBookDataContext context;

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Fields –

Visual Basic)

Visual Basic

Public Class GuestBookEntryDataSource

 Private Shared storageAccount As CloudStorageAccount

 Private context As GuestBookDataContext

End Class

19. Now, add a static (Shared in Visual Basic) constructor to the data source class as shown in

the following (highlighted) code. This code creates the tables from the

GuestBookDataContext class.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Static

Constructor – C#)

C#

public class GuestBookEntryDataSource

{

 private static CloudStorageAccount storageAccount;

 private GuestBookDataContext context;

 static GuestBookEntryDataSource()

 {

 storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 CloudTableClient.CreateTablesFromModel(

 typeof(GuestBookDataContext),

 storageAccount.TableEndpoint.AbsoluteUri,

 storageAccount.Credentials);

 }

}

 29

 S.Sharmili Priyadarsini

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Shared

Constructor – Visual Basic)

Visual Basic

Public Class GuestBookEntryDataSource

 Private Shared storageAccount As CloudStorageAccount

 Private context As GuestBookDataContext

 Shared Sub New()

 storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString")

 CloudTableClient.CreateTablesFromModel(GetType(GuestBookDataContext),

storageAccount.TableEndpoint.AbsoluteUri, storageAccount.Credentials)

 End Sub

End Class

Note: The static (Shared in Visual Basic) constructor initializes the storage account by

reading its settings from the configuration and then uses the CreateTablesFromModel

method in the CloudTableClient class to create the tables used by the application from the

model defined by the GuestBookDataContext class. By using the static constructor, you

ensure that this initialization task is executed only once.

20. Add a default constructor to the GuestBookDataEntrySource class to initialize the data

context class used to access table storage.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

Constructor – C#)

C#

public GuestBookEntryDataSource()

{

 this.context = new

GuestBookDataContext(storageAccount.TableEndpoint.AbsoluteUri,

storageAccount.Credentials);

 this.context.RetryPolicy = RetryPolicies.Retry(3,

TimeSpan.FromSeconds(1));

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

Constructor – Visual Basic)

Visual Basic

Public Sub New()

 Me.context = New

GuestBookDataContext(storageAccount.TableEndpoint.AbsoluteUri,

storageAccount.Credentials)

 30

 S.Sharmili Priyadarsini

 Me.context.RetryPolicy = RetryPolicies.Retry(3, TimeSpan.FromSeconds(1))

End Sub

21. Next, insert the following method to return the contents of the GuestBookEntry table.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Select –

C#)

C#

public IEnumerable<GuestBookEntry> Select()

{

 var results = from g in this.context.GuestBookEntry

 where g.PartitionKey ==

DateTime.UtcNow.ToString("MMddyyyy")

 select g;

 return results;

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource Select –

Visual Basic)

Visual Basic

Public Function [Select]() As IEnumerable(Of GuestBookEntry)

 Dim results = From g In Me.context.GuestBookEntry _

 Where g.PartitionKey = DateTime.UtcNow.ToString("MMddyyyy")

_

 Select g

 Return results

End Function

Note: The Select method retrieves today's guest book entries by constructing a LINQ

statement using the current date as the partition key. The web role uses this method to

bind to a data grid and display the guest book.

22. Now, add the following method to insert new entries into the GuestBookEntry table.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

AddGuestBookEntry – C#)

C#

public void AddGuestBookEntry(GuestBookEntry newItem)

{

 this.context.AddObject("GuestBookEntry", newItem);

 this.context.SaveChanges();

}

 31

 S.Sharmili Priyadarsini

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

AddGuestBookEntry – Visual Basic)

Visual Basic

Public Sub AddGuestBookEntry(ByVal newItem As GuestBookEntry)

 Me.context.AddObject("GuestBookEntry", newItem)

 Me.context.SaveChanges()

End Sub

Note: This method adds a new GuestBookEntry object to the data context and then calls

SaveChanges to write the entity to storage.

23. Finally, add a method to the data source class to update the thumbnail URL property for an

entry.

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

UpdateImageThumbnail – C#)

C#

public void UpdateImageThumbnail(string partitionKey, string rowKey, string

thumbUrl)

{

 var results = from g in this.context.GuestBookEntry

 where g.PartitionKey == partitionKey && g.RowKey == rowKey

 select g;

 var entry = results.FirstOrDefault<GuestBookEntry>();

 entry.ThumbnailUrl = thumbUrl;

 this.context.UpdateObject(entry);

 this.context.SaveChanges();

}

(Code Snippet – Introduction to Windows Azure - Ex01 GuestBookEntryDataSource

UpdateImageThumbnail – Visual Basic)

Visual Basic

Public Sub UpdateImageThumbnail(ByVal partitionKey As String, ByVal rowKey

As String, ByVal thumbUrl As String)

 Dim results = From g In Me.context.GuestBookEntry _

 Where g.PartitionKey = partitionKey AndAlso g.RowKey =

rowKey _

 Select g

 Dim entry = results.FirstOrDefault()

 entry.ThumbnailUrl = thumbUrl

 Me.context.UpdateObject(entry)

 Me.context.SaveChanges()

End Sub

 32

 S.Sharmili Priyadarsini

Note: The UpdateImageThumbnail method locates an entry using its partition key and row

key; it updates the thumbnail URL, notifies the data context of the update, and then saves

the changes.

24. Save the GuestBookEntryDataSource.cs file (for Visual C# projects) or

GuestBookEntryDataSource.vb file (for Visual Basic projects).

Task 3 – Creating a Web Role to Display the Guest Book and Process User Input

In this task, you update the web role project that you generated in Task 1 when you created the

Windows Azure Cloud Service solution. This involves updating the UI to render the list of guest book

entries. For this purpose, you will find a page that has the necessary elements in the Assets folder of

the exercise, which you will add to the project. Next, you implement the code necessary to store

submitted entries in table storage and images in blob storage. Finally, you configure the storage

account used by the Web role.

1. Add a reference to the storage client API assembly. In Solution Explorer, right-click the

GuestBook_WebRole project node and point to Add Reference, switch to the .NET Tab,

select the Microsoft.WindowsAzure.StorageClient assembly and click OK.

2. Now, add a reference to the GuestBook_Data project. Once again, in Solution Explorer,

right-click the GuestBook_WebRole project node and select Add Reference, switch to the

Project tab this time, select the GuestBook_Data project and click OK.

3. The web role template generates a default page. You will replace it with another page that

contains the UI of the guest book application. To delete the page, in Solution Explorer,

right-click Default.aspx in the GuestBook_WebRole project and select Delete.

4. Add the main page and its associated assets to the web role. To do this, right-click

GuestBook_WebRole in Solution Explorer, point to Add and select Existing Item. In the Add

Existing Item dialog, browse to the Assets folder in the Source\Ex01-

BuildingYourFirstWindowsAzureApp for the language of your project (Visual C# or Visual

Basic), hold the CTRL key down while you select every file in this folder and click Add.

Note: The Assets folder contains five files that you need to add to the project, a

Default.aspx file with its code-behind and designer files, a CSS file, and an image file.

5. Open the code-behind file for the main page in the GuestBook_WebRole project. To do this,

right-click the Default.aspx file in Solution Explorer and select View Code.

6. In the code-behind file, insert the following namespace declarations.

(Code Snippet – Introduction to Windows Azure - Ex01 Web Role Namespace Declarations –

C#)

 33

 S.Sharmili Priyadarsini

C#

using System.Net;

using GuestBook_Data;

using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.ServiceRuntime;

using Microsoft.WindowsAzure.StorageClient;

(Code Snippet – Introduction to Windows Azure - Ex01 Web Role Namespace Declarations –

Visual Basic)

Visual Basic

Imports System.Net

Imports GuestBook_Data

Imports Microsoft.WindowsAzure

Imports Microsoft.WindowsAzure.ServiceRuntime

Imports Microsoft.WindowsAzure.StorageClient

7. Declare the following member fields in the _Default class.

(Code Snippet – Introduction to Windows Azure - Ex01 Web Role Member Fields – C#)

C#

private static bool storageInitialized = false;

private static object gate = new Object();

private static CloudBlobClient blobStorage;

(Code Snippet – Introduction to Windows Azure - Ex01 Web Role Member Fields – Visual

Basic)

Visual Basic

Private Shared storageInitialized As Boolean = False

Private Shared gate As New Object()

Private Shared blobStorage As CloudBlobClient

8. Locate the SignButton_Click event handler in the code-behind file and insert the following

code.

(Code Snippet – Introduction to Windows Azure - Ex01 SignButton_Click – C#)

C#

protected void SignButton_Click(object sender, EventArgs e)

{

 if (FileUpload1.HasFile)

 {

 InitializeStorage();

 // upload the image to blob storage

 34

 S.Sharmili Priyadarsini

 CloudBlobContainer container =

blobStorage.GetContainerReference("guestbookpics");

 string uniqueBlobName = string.Format("image_{0}.jpg",

Guid.NewGuid().ToString());

 CloudBlockBlob blob = container.GetBlockBlobReference(uniqueBlobName);

 blob.Properties.ContentType = FileUpload1.PostedFile.ContentType;

 blob.UploadFromStream(FileUpload1.FileContent);

 System.Diagnostics.Trace.TraceInformation("Uploaded image '{0}' to blob

storage as '{1}'", FileUpload1.FileName, uniqueBlobName);

 // create a new entry in table storage

 GuestBookEntry entry = new GuestBookEntry() { GuestName =

NameTextBox.Text, Message = MessageTextBox.Text, PhotoUrl =

blob.Uri.ToString(), ThumbnailUrl = blob.Uri.ToString() };

 GuestBookEntryDataSource ds = new GuestBookEntryDataSource();

 ds.AddGuestBookEntry(entry);

 System.Diagnostics.Trace.TraceInformation("Added entry {0}-{1} in table

storage for guest '{2}'", entry.PartitionKey, entry.RowKey,

entry.GuestName);

 }

 NameTextBox.Text = "";

 MessageTextBox.Text = "";

 DataList1.DataBind();

}

(Code Snippet – Introduction to Windows Azure - Ex01 SignButton_Click – Visual Basic)

Visual Basic

Protected Sub SignButton_Click(ByVal sender As Object, ByVal e As

EventArgs) Handles SignButton.Click

 If FileUpload1.HasFile Then

 InitializeStorage()

 ' upload the image to blob storage

 Dim container As CloudBlobContainer =

blobStorage.GetContainerReference("guestbookpics")

 Dim uniqueBlobName As String = String.Format("image_{0}.jpg",

Guid.NewGuid().ToString())

 Dim blob As CloudBlockBlob =

container.GetBlockBlobReference(uniqueBlobName)

 blob.Properties.ContentType = FileUpload1.PostedFile.ContentType

 blob.UploadFromStream(FileUpload1.FileContent)

 System.Diagnostics.Trace.TraceInformation("Uploaded image '{0}' to blob

storage as '{1}'", FileUpload1.FileName, uniqueBlobName)

 ' create a new entry in table storage

 Dim entry As New GuestBookEntry() With {.GuestName = NameTextBox.Text,

.Message = MessageTextBox.Text, .PhotoUrl = blob.Uri.ToString(),

.ThumbnailUrl = blob.Uri.ToString()}

 35

 S.Sharmili Priyadarsini

 Dim ds As New GuestBookEntryDataSource()

 ds.AddGuestBookEntry(entry)

 System.Diagnostics.Trace.TraceInformation("Added entry {0}-{1} in table

storage for guest '{2}'", entry.PartitionKey, entry.RowKey,

entry.GuestName)

 End If

 NameTextBox.Text = ""

 MessageTextBox.Text = ""

 DataList1.DataBind()

End Sub

Note: To process a new guest book entry after the user submits the page, the handler first

calls the InitializeStorage method to ensure that the blob container used to store images

exists and allows public access. You will implement this method shortly.

It then obtains a reference to the blob container, generates a unique name and creates a

new blob, and then uploads the image submitted by the user into this blob. Notice that the

method initializes the ContentType property of the blob from the content type of the file

submitted by the user. When the guest book page reads the blob back from storage, the

response returns this content type, which allows a page to display the image contained in

the blob simply by referring to its URL.

After that, it creates a new GuestBookEntry entity, which is the entity you defined in the

previous task, initializes it with the information submitted by the user, and then uses the

GuestBookEntryDataSource class to save the entry to table storage using the .NET Client

Library for ADO.NET Data Services.

Finally, it data binds the guest book entries list to refresh its contents.

9. Update the body of the Timer1_Tick method with the code shown (highlighted) below.

(Code Snippet – Introduction to Windows Azure - Ex01 Timer1_Tick– C#)

C#

protected void Timer1_Tick(object sender, EventArgs e)

{

 DataList1.DataBind();

}

(Code Snippet – Introduction to Windows Azure - Ex01 Timer1_Tick– Visual Basic)

Visual Basic

Protected Sub Timer1_Tick(ByVal sender As Object, ByVal e As EventArgs)

Handles Timer1.Tick

 DataList1.DataBind()

End Sub

 36

 S.Sharmili Priyadarsini

Note: A timer on the page periodically refreshes the contents of the guest book entries list.

10. Locate the Page_Load event handler and update its body with the following (highlighted)

code to enable the page refresh timer.

(Code Snippet – Introduction to Windows Azure - Ex01 Page_Load – C#)

C#

protected void Page_Load(object sender, EventArgs e)

{

 if (!Page.IsPostBack)

 {

 Timer1.Enabled = true;

 }

}

(Code Snippet – Introduction to Windows Azure - Ex01 Page_Load – Visual Basic)

Visual Basic

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 If Not (Page.IsPostBack) Then

 Timer1.Enabled = True

 End If

End Sub

11. Implement the InitializeStorage method by replacing its body with the following

(highlighted) code.

(Code Snippet – Introduction to Windows Azure - Ex01 InitializeStorage –C#)

C#

private void InitializeStorage()

{

 if (storageInitialized)

 {

 return;

 }

 lock (gate)

 {

 if (storageInitialized)

 {

 return;

 }

 try

 37

 S.Sharmili Priyadarsini

 {

 // read account configuration settings

 var storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 // create blob container for images

 blobStorage = storageAccount.CreateCloudBlobClient();

 CloudBlobContainer container =

blobStorage.GetContainerReference("guestbookpics");

 container.CreateIfNotExist();

 // configure container for public access

 var permissions = container.GetPermissions();

 permissions.PublicAccess = BlobContainerPublicAccessType.Container;

 container.SetPermissions(permissions);

 }

 catch (WebException)

 {

 throw new WebException("Storage services initialization failure. "

 + "Check your storage account configuration settings. If running

locally, "

 + "ensure that the Development Storage service is running.");

 }

 storageInitialized = true;

 }

}

(Code Snippet – Introduction to Windows Azure - Ex01 InitializeStorage – Visual Basic)

Visual Basic

Private Sub InitializeStorage()

 If storageInitialized Then

 Return

 End If

 SyncLock gate

 If storageInitialized Then

 Return

 End If

 Try

 ' read account configuration settings

 Dim storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString")

 ' create blob container for images

 blobStorage = storageAccount.CreateCloudBlobClient()

 Dim container As CloudBlobContainer =

blobStorage.GetContainerReference("guestbookpics")

 container.CreateIfNotExist()

 38

 S.Sharmili Priyadarsini

 ' configure container for public access

 Dim permissions = container.GetPermissions()

 permissions.PublicAccess = BlobContainerPublicAccessType.Container

 container.SetPermissions(permissions)

 Catch e1 As WebException

 Throw New WebException("Storage services initialization failure. " _

 & "Check your storage account configuration settings. If running

locally, " _

 & "ensure that the Development Storage service is running.")

 End Try

 storageInitialized = True

 End SyncLock

End Sub

Note: The InitializeStorage method first ensures that it executes only once. It reads the

storage account settings from the Web role configuration, creates a blob container for the

images uploaded with each guest book entry and configures it for public access.

12. Because the web role uses Windows Azure storage services, you need to provide your

storage account settings. To create a new setting, in Solution Explorer, expand the Roles

node in the GuestBook project, double-click GuestBook_WebRole to open the properties

for this role and select the Settings tab. Click Add Setting, type “DataConnectionString” in

the Name column, change the Type to ConnectionString, and then click the button labeled

with an ellipsis.

Figure 13

Configuring the storage account settings

13. In the Storage Connection String dialog, choose the Use development storage option and

click OK.

 39

 S.Sharmili Priyadarsini

Figure 14

Setting “Use development storage” on Storage Connection String dialog

Note: A storage account is a unique endpoint for the Windows Azure blob, queue, and

table services. You must create a storage account in the Developer Portal to use these

services. In this exercise, you use development storage, which is included in the Windows

Azure SDK development environment to simulate the blob, queue, and table services

available in the cloud. If you are building a hosted service that employs storage services or

writing any external application that calls storage services, you can test locally against

development storage.

To use development storage, you set the value of the UseDevelopmentStorage keyword in

the connection string for the storage account to true. When you deploy your application to

Windows Azure, you need to update the connection string to specify storage account

settings including your account name and shared key. For example,

<Setting name="DataConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=YourAccountName;Ac

countKey=YourAccountKey" />

14. Press CTRL + S to save changes to the role configuration.

15. Finally, you need to set up the environment for the configuration publisher. In the

GuestBook_WebRole project, open the WebRole.cs file (for Visual C# projects) or the

WebRole.vb file (for Visual Basic projects) and insert the following code into the OnStart

method immediately after the line that sets up a handler for the RoleEnvironmentChanging

event.

 40

 S.Sharmili Priyadarsini

C#

public override bool OnStart()

{

 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 // Restart the role upon all configuration changes

 // Note: To customize the handling of configuration changes,

 // remove this line and register custom event handlers instead.

 // See the MSDN topic on “Managing Configuration Changes” for further

details

 // (http://go.microsoft.com/fwlink/?LinkId=166357).

 RoleEnvironment.Changing += RoleEnvironmentChanging;

Microsoft.WindowsAzure.CloudStorageAccount.SetConfigurationSettingPublisher

((configName, configSetter) =>

 {

configSetter(Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.GetConfi

gurationSettingValue(configName));

 });

 return base.OnStart();

}

Visual Basic

Public Overrides Function OnStart() As Boolean

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 ' Restart the role upon all configuration changes

 ' Note: To customize the handling of configuration changes,

 ' remove this line and register custom event handlers instead.

 ' See the MSDN topic on “Managing Configuration Changes” for further

details

 ' (http://go.microsoft.com/fwlink/?LinkId=166357).

 AddHandler RoleEnvironment.Changing, AddressOf RoleEnvironmentChanging

Microsoft.WindowsAzure.CloudStorageAccount.SetConfigurationSettingPublisher

(Function(configName, configSetter)

configSetter(RoleEnvironment.GetConfigurationSettingValue(configName)))

 Return MyBase.OnStart()

End Function

Task 4 – Creating a Worker Role to Process Images in the Background

A worker role runs in the background to provide services or execute time related tasks like a service

process.

 41

 S.Sharmili Priyadarsini

In this task, you create a worker role to read work items posted to a queue by the web role front-

end. The worker role extracts the information about the guest book entry from the message and

then retrieves the entry from table storage. It then fetches the associated image from blob storage

and creates a thumbnail, which it also stores as a blob. Finally, it updates the entry to include the

URL of the generated thumbnail.

1. In Solution Explorer, right-click the Roles node in the GuestBook project, point to Add and

select New Worker Role Project.

2. In the Add New Role Project dialog, select the Worker Role category and choose the

Worker Role template for the language of your choice (Visual C# or Visual Basic). Set the

name of the worker role to GuestBook_WorkerRole and click Add.

Figure 15

Adding a worker role to the GuestBook application (Visual C#)

 42

 S.Sharmili Priyadarsini

Figure 16

Adding a worker role to the GuestBook application (Visual Basic)

3. In the new worker role project, add a reference to the data model project. In Solution

Explorer, right-click the GuestBook_WorkerRole project and select Add Reference, switch

to the Projects tab, select the GuestBook_Data project and click OK.

4. Next, add a reference to the System.Drawing assembly. To do this, in Solution Explorer,

right-click the GuestBook_WorkerRole project, select Add Reference, switch to the .NET

tab, select the System.Drawing component and click OK.

5. Repeat the procedure in the previous step to add a reference to the storage client API

assembly, this time choosing the Microsoft.WindowsAzure.StorageClient component

instead.

6. In the GuestBook_WorkerRole project, open the WorkerRole.cs file (for Visual C# projects)

or WorkerRole.vb file (for Visual Basic projects).

7. In the worker role file, add the followings namespace declarations.

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Namespaces – C#)

C#

using System.Drawing;

using System.IO;

using GuestBook_Data;

using Microsoft.WindowsAzure;

using Microsoft.WindowsAzure.StorageClient;

 43

 S.Sharmili Priyadarsini

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Namespaces – Visual

Basic)

Visual Basic

Imports System.Drawing

Imports System.IO

Imports GuestBook_Data

Imports Microsoft.WindowsAzure

Imports Microsoft.WindowsAzure.StorageClient

8. Add member fields to the WorkerRole class for the blob container and the queue, as shown

below.

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Fields – C#)

C#

private CloudQueue queue;

private CloudBlobContainer container;

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Fields – Visual Basic)

Visual Basic

Private Shared queue As CloudQueue

Private Shared container As CloudBlobContainer

9. Replace the body of the OnStart method with the following code.

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole OnStart – C#)

C#

public override bool OnStart()

{

 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 // Restart the role upon all configuration changes

 RoleEnvironment.Changing += RoleEnvironmentChanging;

 // read storage account configuration settings

 CloudStorageAccount.SetConfigurationSettingPublisher((configName,

configSetter) =>

 {

 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName));

 });

 var storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString");

 // initialize blob storage

 CloudBlobClient blobStorage = storageAccount.CreateCloudBlobClient();

 container = blobStorage.GetContainerReference("guestbookpics");

 44

 S.Sharmili Priyadarsini

 // initialize queue storage

 CloudQueueClient queueStorage = storageAccount.CreateCloudQueueClient();

 queue = queueStorage.GetQueueReference("guestthumbs");

 Trace.TraceInformation("Creating container and queue...");

 bool storageInitialized = false;

 while (!storageInitialized)

 {

 try

 {

 // create the blob container and allow public access

 container.CreateIfNotExist();

 var permissions = container.GetPermissions();

 permissions.PublicAccess = BlobContainerPublicAccessType.Container;

 container.SetPermissions(permissions);

 // create the message queue

 queue.CreateIfNotExist();

 storageInitialized = true;

 }

 catch (StorageClientException e)

 {

 if (e.ErrorCode == StorageErrorCode.TransportError)

 {

 Trace.TraceError("Storage services initialization failure. "

 + "Check your storage account configuration settings. If running

locally, "

 + "ensure that the Development Storage service is running.

Message: '{0}'", e.Message);

 System.Threading.Thread.Sleep(5000);

 }

 else

 {

 throw;

 }

 }

 }

 return base.OnStart();

}

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole OnStart – Visual Basic)

Visual Basic

Public Overrides Function OnStart() As Boolean

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 ' Restart the role upon all configuration changes

 45

 S.Sharmili Priyadarsini

 AddHandler RoleEnvironment.Changing, AddressOf RoleEnvironmentChanging

 ' read storage account configuration settings

 CloudStorageAccount.SetConfigurationSettingPublisher(Function(configName,

configSetter)

configSetter(RoleEnvironment.GetConfigurationSettingValue(configName)))

 Dim storageAccount =

CloudStorageAccount.FromConfigurationSetting("DataConnectionString")

 ' initialize blob storage

 Dim blobStorage = storageAccount.CreateCloudBlobClient()

 container = blobStorage.GetContainerReference("guestbookpics")

 ' initialize queue storage

 Dim queueStorage = storageAccount.CreateCloudQueueClient()

 queue = queueStorage.GetQueueReference("guestthumbs")

 Trace.TraceInformation("Creating container and queue...")

 Dim storageInitialized = False

 Do While (Not storageInitialized)

 Try

 ' create the blob container and allow public access

 container.CreateIfNotExist()

 Dim permissions = container.GetPermissions()

 permissions.PublicAccess = BlobContainerPublicAccessType.Container

 container.SetPermissions(permissions)

 ' create the message queue

 queue.CreateIfNotExist()

 storageInitialized = True

 Catch e As StorageClientException

 If (e.ErrorCode = StorageErrorCode.TransportError) Then

 Trace.TraceError("Storage services initialization failure. " _

 & "Check your storage account configuration settings. If running

locally, " _

 & "ensure that the Development Storage service is running.

Message: '{0}'", e.Message)

 System.Threading.Thread.Sleep(5000)

 Else

 Throw

 End If

 End Try

 Loop

 Return MyBase.OnStart()

End Function

10. Replace the body of the Run method with the code shown below.

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Run – C#)

 46

 S.Sharmili Priyadarsini

C#

public override void Run()

{

 Trace.TraceInformation("Listening for queue messages...");

 while (true)

 {

 try

 {

 // retrieve a new message from the queue

 CloudQueueMessage msg = queue.GetMessage();

 if (msg != null)

 {

 // parse message retrieved from queue

 var messageParts = msg.AsString.Split(new char[] { ',' });

 var uri = messageParts[0];

 var partitionKey = messageParts[1];

 var rowkey = messageParts[2];

 Trace.TraceInformation("Processing image in blob '{0}'.", uri);

 // download original image from blob storage

 CloudBlockBlob imageBlob = container.GetBlockBlobReference(uri);

 MemoryStream image = new MemoryStream();

 imageBlob.DownloadToStream(image);

 image.Seek(0, SeekOrigin.Begin);

 // create a thumbnail image and upload into a blob

 string thumbnailUri =

String.Concat(Path.GetFileNameWithoutExtension(uri), "_thumb.jpg");

 CloudBlockBlob thumbnailBlob =

container.GetBlockBlobReference(thumbnailUri);

 thumbnailBlob.UploadFromStream(CreateThumbnail(image));

 // update the entry in table storage to point to the thumbnail

 var ds = new GuestBookEntryDataSource();

 ds.UpdateImageThumbnail(partitionKey, rowkey,

thumbnailBlob.Uri.AbsoluteUri);

 // remove message from queue

 queue.DeleteMessage(msg);

 Trace.TraceInformation("Generated thumbnail in blob '{0}'.",

thumbnailBlob.Uri);

 }

 else

 {

 System.Threading.Thread.Sleep(1000);

 }

 }

 catch (StorageClientException e)

 {

 47

 S.Sharmili Priyadarsini

 Trace.TraceError("Exception when processing queue item. Message:

'{0}'", e.Message);

 System.Threading.Thread.Sleep(5000);

 }

 }

}

(Code Snippet – Introduction to Windows Azure - Ex01 WorkerRole Run – Visual Basic)

Visual Basic

Public Overrides Sub Run()

 Trace.TraceInformation("Listening for queue messages...")

 Do

 Try

 ' retrieve a new message from the queue

 Dim msg As CloudQueueMessage = queue.GetMessage()

 If msg IsNot Nothing Then

 ' parse message retrieved from queue

 Dim messageParts = msg.AsString.Split(New Char() {","c})

 Dim uri = messageParts(0)

 Dim partitionKey = messageParts(1)

 Dim rowkey = messageParts(2)

 Trace.TraceInformation("Processing image in blob '{0}'.", uri)

 ' download original image from blob storage

 Dim imageBlob As CloudBlockBlob =

container.GetBlockBlobReference(uri)

 Dim image As New MemoryStream()

 imageBlob.DownloadToStream(image)

 image.Seek(0, SeekOrigin.Begin)

 ' create a thumbnail image and upload into a blob

 Dim thumbnailUri As String =

String.Concat(Path.GetFileNameWithoutExtension(uri), "_thumb.jpg")

 Dim thumbnailBlob As CloudBlockBlob =

container.GetBlockBlobReference(thumbnailUri)

 thumbnailBlob.UploadFromStream(CreateThumbnail(image))

 ' update the entry in table storage to point to the thumbnail

 Dim ds = New GuestBookEntryDataSource()

 ds.UpdateImageThumbnail(partitionKey, rowkey,

thumbnailBlob.Uri.AbsoluteUri)

 ' remove message from queue

 queue.DeleteMessage(msg)

 Trace.TraceInformation("Generated thumbnail in blob '{0}'.",

thumbnailBlob.Uri)

 Else

 System.Threading.Thread.Sleep(1000)

 End If

 48

 S.Sharmili Priyadarsini

 Catch e As StorageClientException

 Trace.TraceError("Exception when processing queue item. Message:

'{0}'", e.Message)

 System.Threading.Thread.Sleep(5000)

 End Try

 Loop

End Sub

11. Finally, add the following method to the WorkerRole class to create thumbnails from a

given image.

(Code Snippet – Introduction to Windows Azure - Ex01 CreateThumbnail - C#)

C#

private Stream CreateThumbnail(Stream input)

{

 var orig = new Bitmap(input);

 int width;

 int height;

 if (orig.Width > orig.Height)

 {

 width = 128;

 height = 128 * orig.Height / orig.Width;

 }

 else

 {

 height = 128;

 width = 128 * orig.Width / orig.Height;

 }

 var thumb = new Bitmap(width, height);

 using (Graphics graphic = Graphics.FromImage(thumb))

 {

 graphic.InterpolationMode =

System.Drawing.Drawing2D.InterpolationMode.HighQualityBicubic;

 graphic.SmoothingMode =

System.Drawing.Drawing2D.SmoothingMode.AntiAlias;

 graphic.PixelOffsetMode =

System.Drawing.Drawing2D.PixelOffsetMode.HighQuality;

 graphic.DrawImage(orig, 0, 0, width, height);

 var ms = new MemoryStream();

 thumb.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg);

 ms.Seek(0, SeekOrigin.Begin);

 return ms;

 }

}

 49

 S.Sharmili Priyadarsini

(Code Snippet – Introduction to Windows Azure - Ex01 CreateThumbnail - Visual Basic)

Visual Basic

Private Function CreateThumbnail(ByVal input As Stream) As Stream

 Dim orig As New Bitmap(input)

 Dim width As Integer

 Dim height As Integer

 If orig.Width > orig.Height Then

 width = 128

 height = 128 * orig.Height / orig.Width

 Else

 height = 128

 width = 128 * orig.Width / orig.Height

 End If

 Dim thumb As New Bitmap(width, height)

 Using graphic = Graphics.FromImage(thumb)

 graphic.InterpolationMode =

Drawing2D.InterpolationMode.HighQualityBicubic

 graphic.SmoothingMode = Drawing2D.SmoothingMode.AntiAlias

 graphic.PixelOffsetMode = Drawing2D.PixelOffsetMode.HighQuality

 graphic.DrawImage(orig, 0, 0, width, height)

 Dim ms As New MemoryStream()

 thumb.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg)

 ms.Seek(0, SeekOrigin.Begin)

 Return ms

 End Using

End Function

12. The worker role also uses Windows Azure storage services and you need to configure your

storage account settings, just as you did in the case of the web role. To create the storage

account setting, in Solution Explorer, expand the Roles node in the GuestBook project,

double-click GuestBook_WorkerRole to open the properties for this role and select the

Settings tab. Click Add Setting, type “DataConnectionString” in the Name column, change

the Type to ConnectionString, and then click the button labeled with an ellipsis. In the

Storage Connection String dialog, choose the Use development storage option and click

OK. Press CTRL + S to save your changes.

Task 5 – Using Queues to Dispatch Jobs to the Worker Role

In this task, you update the front-end web role to dispatch work items to the queue so that the

worker role can process guest book entries and generate thumbnails for the images.

1. Open the code-behind file for the main page in the GuestBook_WebRole project. To do this,

right-click the Default.aspx file in Solution Explorer and select View Code.

2. Declare a new member field in the _Default class for the queue client.

 50

 S.Sharmili Priyadarsini

C#

private static CloudQueueClient queueStorage;

Visual Basic

Private Shared queueStorage As CloudQueueClient

3. Update the SignButton_Click event handler to queue a work item to generate a thumbnail

for the uploaded image. To do this, insert the following (highlighted) code immediately

following the code that creates a new entry in table storage.

(Code Snippet – Introduction to Windows Azure - Ex01 Queue Work Item – C#)

C#

protected void SignButton_Click(object sender, EventArgs e)

{

 if (FileUpload1.HasFile)

 {

 InitializeStorage();

 ...

 // create a new entry in table storage

 GuestBookEntry entry = new GuestBookEntry() { GuestName =

NameTextBox.Text, Message = MessageTextBox.Text, PhotoUrl =

blob.Uri.ToString(), ThumbnailUrl = blob.Uri.ToString() };

 GuestBookEntryDataSource ds = new GuestBookEntryDataSource();

 ds.AddGuestBookEntry(entry);

 System.Diagnostics.Trace.TraceInformation("Added entry {0}-{1} in table

storage for guest '{2}'", entry.PartitionKey, entry.RowKey,

entry.GuestName);

 // queue a message to process the image

 var queue = queueStorage.GetQueueReference("guestthumbs");

 var message = new CloudQueueMessage(String.Format("{0},{1},{2}",

uniqueBlobName, entry.PartitionKey, entry.RowKey));

 queue.AddMessage(message);

 System.Diagnostics.Trace.TraceInformation("Queued message to process

blob '{0}'", uniqueBlobName);

 }

 NameTextBox.Text = "";

 MessageTextBox.Text = "";

 DataList1.DataBind();

}

(Code Snippet – Introduction to Windows Azure - Ex01 Queue Work Item – Visual Basic)

 51

 S.Sharmili Priyadarsini

Visual Basic

Protected Sub SignButton_Click(ByVal sender As Object, ByVal e As

EventArgs) Handles SignButton.Click

 If FileUpload1.HasFile Then

 InitializeStorage()

 ...

 ' create a new entry in table storage

 Dim entry As New GuestBookEntry() With {.GuestName = NameTextBox.Text,

.Message = MessageTextBox.Text, .PhotoUrl = blob.Uri.ToString(),

.ThumbnailUrl = blob.Uri.ToString()}

 Dim ds As New GuestBookEntryDataSource()

 ds.AddGuestBookEntry(entry)

 System.Diagnostics.Trace.TraceInformation("Added entry {0}-{1} in table

storage for guest '{2}'", entry.PartitionKey, entry.RowKey,

entry.GuestName)

 ' queue a message to process the image

 Dim queue = queueStorage.GetQueueReference("guestthumbs")

 Dim message = New CloudQueueMessage(String.Format("{0},{1},{2}",

uniqueBlobName, entry.PartitionKey, entry.RowKey))

 queue.AddMessage(message)

 System.Diagnostics.Trace.TraceInformation("Queued message to process

blob '{0}'", uniqueBlobName)

 End If

 NameTextBox.Text = ""

 MessageTextBox.Text = ""

 DataList1.DataBind()

End Sub

Note: The updated code obtains a reference to the “guestthumbs” queue. It constructs a

new message that consists of a comma-separated string with the name of the blob that

contains the image, the partition key, and the row key of the entity that was added. The

worker role can easily parse messages with this format. The method then submits the

message to the queue.

4. Finally, update the InitializeStorage method to create the queue by inserting the following

(highlighted) code immediate after the code that configures the blob container for public

access.

(Code Snippet – Introduction to Windows Azure - Ex01 Create Queue – C#)

C#

private void InitializeStorage()

{

 ...

 52

 S.Sharmili Priyadarsini

 try

 {

 ...

 // configure container for public access

 var permissions = container.GetPermissions();

 permissions.PublicAccess = BlobContainerPublicAccessType.Container;

 container.SetPermissions(permissions);

 // create queue to communicate with worker role

 queueStorage = storageAccount.CreateCloudQueueClient();

 CloudQueue queue = queueStorage.GetQueueReference("guestthumbs");

 queue.CreateIfNotExist();

 }

 catch (WebException)

 {

 ...

 }

 storageInitialized = true;

 }

}

(Code Snippet – Introduction to Windows Azure - Ex01 Create Queue – Visual Basic)

Visual Basic

Private Sub InitializeStorage()

 ...

 Try

 ...

 ' configure container for public access

 Dim permissions = container.GetPermissions()

 permissions.PublicAccess = BlobContainerPublicAccessType.Container

 container.SetPermissions(permissions)

 ' create queue to communicate with worker role

 queueStorage = storageAccount.CreateCloudQueueClient()

 Dim queue As CloudQueue =

queueStorage.GetQueueReference("guestthumbs")

 queue.CreateIfNotExist()

 Catch e1 As WebException

 ...

 End Try

 storageInitialized = True

 End SyncLock

End Sub

 53

 S.Sharmili Priyadarsini

Note: The updated code creates a queue that the web role uses to submit new jobs to the

worker role.

Verification

In this task, you test the GuestBook application in the Development Fabric. The Development Fabric,

or simple devfabric, is a simulated environment for developing and testing Windows Azure

applications in your machine.

1. Press F5 to execute the service. The service builds and then launches the local development

fabric. To show the development fabric UI, right-click its icon located in the system tray and

select Show Development Fabric UI.

Figure 17

Showing the development fabric UI

2. Switch to Internet Explorer to view the GuestBook application.

3. Add a new entry to the guest book. To do this, type your name and a message, choose an

image to upload, and then click the pencil icon to submit the entry.

Figure 18

 54

 S.Sharmili Priyadarsini

Windows Azure GuestBook home page

It is a good idea to choose a large hi-res image because the guestbook service will resize it.

Once you submit an entry, the web role creates a new entry in the guest book table and

uploads the photo to blob storage. The page contains a timer that triggers a page refresh

every 5 seconds, so the new entry should appear on the page after a brief interval.

Initially, the new entry contains a link to the blob that contains the uploaded image so it will

appear with the same size as the original image.

Figure 19

GuestBook showing the image with its original size

After a few seconds, the page refreshes and displays the thumbnail that the worker role

generated instead.

 55

 S.Sharmili Priyadarsini

Figure 20

GuestBook showing the generated thumbnail

 Deploying a Windows Azure

Application

In this exercise, you deploy the application created in the previous exercise to Windows Azure using

the Windows Azure Developer Portal. First, you register to obtain a Windows Azure developer

account and provision the required service components. Next, you upload the application package to

the staging area and configure it. You then execute the application in the staging area to verify its

operation. Finally, you promote the application to production.

Task 1 – Creating a Windows Azure Account

In this task, you create a new Windows Azure account and redeem an invitation token to enable the

creation of hosted services.

4. Navigate to http://windows.azure.com using a Web browser and sign in using your

Windows Live ID.

http://windows.azure.com/

 56

 S.Sharmili Priyadarsini

Figure 21

Signing in to the Windows Azure portal

5. If this is your first visit to the Windows Azure Developer Portal, create a new account

associated to your Windows Live ID. Review the Privacy Statement and click I Agree to

proceed.

Figure 22

Creating a new Windows Azure Developer Portal account

6. After creating the account, click Continue to proceed.

Figure 23

Successful creation of the account

 57

 S.Sharmili Priyadarsini

7. Enter your invitation token and click Next to redeem it.

Note: Invitation tokens are required to enable services at the Windows Azure Developer

Portal. To obtain an invitation token, you will need to register at

http://connect.microsoft.com to obtain a product key for the Windows Azure Platform.

Figure 24

Redeeming an invitation token to enable the creation of hosted services

Task 2 – Creating a Storage Account and a Hosted Service Component

The application you deploy in this exercise requires both compute and storage services. In this task,

you create a new Windows Azure storage account to allow the application to persist its data. In

addition, you define a hosted service component to execute application code.

1. In My Projects, locate the project where you plan to deploy the application and click the

Project Name link to view the list of services under it.

Note: The items in this list are projects associated with your Windows Live ID. Following

commercial launch, you will see every project that you have purchased listed here.

Figure 25

Available projects in your Windows Azure account

2. First, you create the storage account that the application will use to store its data. In the

Windows Azure Summary page, click New Service.

http://connect.microsoft.com/

 58

 S.Sharmili Priyadarsini

Figure 26

Creating a new Windows Azure service

3. In the Windows Azure Summary page, click Storage Account.

Figure 27

Creating a new Windows Azure storage account

4. Enter the Service Component Label and Service Component Description and click Next to

proceed. The values you enter here allow you to identify the account storage component in

the portal user interface.

 59

 S.Sharmili Priyadarsini

Figure 28

Configuring the service component properties

5. In the Storage Account Name section, enter the name for your storage account, for

example, <yourname>guestbook, where <yourname> is a unique name. Windows Azure

uses this value to generate the endpoint URLs for the storage account services. To ensure

that the name is valid, click Check Availability to verify that the name satisfies the naming

rules and is currently available.

Note: The name used for the storage account corresponds to a DNS name and is subject to

standard DNS naming rules. Moreover, the name is publicly visible and must therefore be

unique.

6. In the Storage Account Affinity Group section, click "Yes, this service is related to some of

my other hosted services or storage accounts and needs to be stored in the same region."

and then select the "Create a new Affinity Group Region" option. Set the value of the

affinity group to the label guestbook and choose the region where you wish your service to

run, most likely, the one that is closest to your current location.

 60

 S.Sharmili Priyadarsini

Figure 29

Configuring the storage account URL and affinity group

Note: The reason that you are creating a new affinity group is to deploy both the hosted

service and storage account to the same location, thus ensuring high bandwidth and low

latency between the application and the data it depends on.

7. Click Create to register your new storage account. Wait until the account provisioning

process completes and updates the Summary page. Notice the available Endpoints and the

Access Keys assigned to the storage account. Record the Storage Account Name and the

value assigned to the Primary Access Key. You will use these values later on to configure the

application.

Note: The Endpoints specify the URLs of the blob, queue, and table storage services for

this account.

The Primary Access Key and Secondary Access Key both provide a shared secret that you

can use to access storage. The secondary key gives the same access as the primary key and

is used for backup purposes. You can regenerate each key independently in case either one

is compromised.

 61

 S.Sharmili Priyadarsini

Figure 30

Successful creation of the storage account

8. Next, create the compute component that executes the application code. Click New Service

once again to create a hosted services account for the application. In the Project section,

click Hosted Services.

Figure 31

Creating a new hosted service

9. Enter the Service Component Label and Service Component Description and click Next to

proceed. The values you enter here allow you to identify the hosted service component in

the portal user interface.

 62

 S.Sharmili Priyadarsini

Figure 32

Configuring the service component properties

10. In the Hosted Service URL section, enter the name for your hosted service, for example,

<yourname>guestbook, where <yourname> is a unique name. Windows Azure uses this

value to generate the endpoint URL of the hosted service. To ensure that the name is valid,

click Check Availability to verify that the name satisfies the naming rules and is currently

available.

Note: If possible, choose the same name for both the storage account and hosted service.

However, you may need to choose a different name if the one you select is unavailable.

11. In the Storage Account Affinity Group section, click "Yes, this service is related to some of

my other hosted services or storage accounts and needs to be stored in the same region."

and then select the "Use existing Affinity Group Region" option. Select GuestBook in the

affinity group drop down list.

Note: By choosing GuestBook as the affinity group, you ensure that the hosted service is

deployed to the same location as the storage account that you provisioned earlier.

 63

 S.Sharmili Priyadarsini

Figure 33

Configuring the hosted service URL and affinity group

12. Click Create to register the hosted service and wait until the provisioning process completes.

Task 3 – Deploying the Application to the Windows Azure Developer Portal

A hosted service is a service that runs your code in the Windows Azure environment. It has two

separate deployment states: staging and production. A staging deployment allows you to test your

service in the Windows Azure environment before you deploy it to production.

In this task, you deploy the application code to the staging environment but first, you have to

generate the package.

1. If it is not already open, launch Microsoft Visual Studio 2008 in elevated administrator

mode, from Start | All Programs | Microsoft Visual Studio 2008 by right clicking the

Microsoft Visual Studio 2008 shortcut and choosing Run as Administrator.

2. In the File menu, choose Open and then Project/Solution. In the Open Project dialog,

browse to Ex01-BuildingYourFirstWindowsAzureApp in the Source folder of the lab and

choose the folder for the language of your preference (Visual C# or Visual Basic). Select

End.sln in the End folder and click Open. Alternatively, you may continue with the solution

that you obtained after completing Exercise 1.

 64

 S.Sharmili Priyadarsini

3. Generate the package to deploy to the cloud. To do this, right-click the GuestBook cloud

project and select Publish. After a few seconds, Windows Explorer will open with the

current folder set to the location where Visual Studio generated the package.

4. In the hosted service Summary page of the Windows Azure portal, click Deploy to upload

the service package to the portal.

Figure 34

Hosted service summary page

5. In the Staging Deployment page, under the App Package section, click "Upload a file from

your local storage" to select it. Click Browse and navigate to the folder where Visual Studio

generated the package in Step 3 and select GuestBook.cspkg.

6. In the Configuration Settings section, once again choose "Upload a file from your local

storage", click Browse and select ServiceConfiguration.cscfg in the same folder that you

used in the previous step.

Note: The .cscfg file contains configuration settings for the application, including storage

settings that you will update later in the exercise.

7. Finally, in the Properties section, enter a label to identify the deployment; for example, use

v1.0.

Note: The portal displays the label in its user interface for staging and production, which

allows you to identify the version currently deployed in each environment.

 65

 S.Sharmili Priyadarsini

Figure 35

Configuring the service package deployment

8. Click Deploy to start uploading the package to the Windows Azure Developer Portal.

Figure 36

Uploading a service package to the Windows Azure Developer Portal

 66

 S.Sharmili Priyadarsini

9. Wait until the deployment process finishes, which may take several minutes. At this point,

you have already uploaded the package and it is in an Allocated state. Notice that the portal

assigned this deployment a Web Site URL that includes a unique identifier. Shortly, you will

access this URL to test the application and determine whether it operates correctly in the

Windows Azure environment, but first you need to configure it.

Note: During deployment, Windows Azure analyzes the configuration file and copies the

service to the correct number of machines, ready to start. Load balancers, network devices

and monitoring are also configured during this time.

Figure 37

Package successfully deployed

Task 4 – Configuring the Application to Use the Storage Account

Before you can test the deployed application, you need to configure it. In this task, you define the

storage account settings for the application.

1. In the Summary page, under the Hosted Service section, click Configure for the Staging

environment.

 67

 S.Sharmili Priyadarsini

Figure 38

Configuring application settings

2. In the Service Tuning page, under Configuration Settings, locate the GuestBook_WebRole

configuration settings and update the value of the AccountName setting by replacing the

placeholder labeled [YOUR_ACCOUNT_NAME] with the Storage Account Name that you

chose when you configured the storage account in Task 2. If you followed the

recommendation, the name should follow the pattern <yourname>guestbook, where

<yourname> is a unique name.

Note: If you continued using the solution created in Exercise 1, you will not find the

placeholders mentioned above. In that case, update the configuration with the following:

<?xml version="1.0"?>

<ServiceConfiguration serviceName="GuestBook"

xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfigur

ation">

 <Role name="GuestBook_WebRole">

 <Instances count="1" />

 <ConfigurationSettings>

 <Setting name="DataConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=[YOUR_ACCOUNT_NAME];Acco

untKey=[YOUR_ACCOUNT_KEY]" />

 <Setting name="DiagnosticsConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=[YOUR_ACCOUNT_NAME];Acco

untKey=[YOUR_ACCOUNT_KEY]" />

 </ConfigurationSettings>

 </Role>

 <Role name="GuestBook_WorkerRole">

 <Instances count="1" />

 <ConfigurationSettings>

 68

 S.Sharmili Priyadarsini

 <Setting name="DataConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=[YOUR_ACCOUNT_NAME];Acco

untKey=[YOUR_ACCOUNT_KEY]" />

 <Setting name="DiagnosticsConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=[YOUR_ACCOUNT_NAME];Acco

untKey=[YOUR_ACCOUNT_KEY]" />

 </ConfigurationSettings>

 </Role>

</ServiceConfiguration>

3. Next, update the AccountSharedKey setting by replacing the placeholder labeled

[YOUR_ACCOUNT_KEY] with the Primary Shared Key value that you recorded earlier when

you created the storage account in Task 2.

4. Finally, locate the Instances element and change the count attribute to a value of 2.

Note: The Instances setting controls the number of roles that Windows Azure starts and is

used to scale the service. Currently, it is limited to a maximum of two instances. However,

once the service is commercially available, you will be able to change it to any number that

you are willing to pay for.

Figure 39

Setting the storage account name and shared key

Note: The configuration is simply an XML document that contains the value of the settings

declared in the service definition file and its initial content is determined by the

 69

 S.Sharmili Priyadarsini

ServiceConfiguration.cscfg file that you uploaded earlier, when you deployed the package

in Task 3.

5. Repeat steps 2 - 3 to update the storage account settings for GuestBook_WorkerRole.

6. Click Save to update the configuration and wait for the hosted service to apply the new

settings.

Note: The portal displays a legend "Package is updating..." while the settings are applied.

Task 5 – Testing the Application in the Staging Environment

In this task, you run the application in the staging environment and access its Web Site URL to test

that it operates correctly.

1. In the Summary page, under the Hosted Service section, click Run for the deployment in the

Staging environment.

Figure 40

Running the application in the staging environment

2. Wait until the status of the service is shown first as Initializing and then as Ready.

Note: The process may take several minutes during which Windows Azure provisions

servers, load balancers and other network devices, as well as preparing to monitor the

application. Once the application is running, it takes care of patching the OS, recovering

from hardware failure, and ensuring that storage is available.

 70

 S.Sharmili Priyadarsini

Figure 41

Application initialization process

3. Once the service has started, click the Web Site URL link to open a new browser window

that points to the application.

Note: The address URL is shown as <guid>.cloudapp.net, where <guid> is some random

identifier. This is different from the address where the application will run once it is in

production. Although the application executes in a staging area that is separate from the

production environment, there is no actual physical difference between staging and

production – it is simply a matter of where the load balancer is connected.

In the future, you will be able to have multiple “virtual” areas, for test, QA, pre-production,

etc...

 71

 S.Sharmili Priyadarsini

Figure 42

Application running in the staging environment

4. If you wish, you can test the application by signing the guestbook and uploading an image.

Task 6 – Promoting the Application to Production

Now that you have verified that the service is working correctly in the staging environment, you are

ready to promote it to final production. When you deploy the application to production, Windows

Azure reconfigures its load balancers so that the application is available at its production URL.

1. In the Summary page, under the Hosted Service section, click the Swap button (this is the

circular button located between the Production and Staging areas). When prompted, click

OK to confirm that you wish to promote to the production deployment.

 72

 S.Sharmili Priyadarsini

Figure 43

Promoting the application to the production deployment

2. Wait for the promotion process to complete, which typically takes a few seconds. Notice

that the Production service status is now shown as Ready and that the Web Site URL

corresponds to the URL that you chose earlier, when you configured the hosted service in

Task 2.

Figure 44

Application successfully deployed to production

 73

 S.Sharmili Priyadarsini

3. Click the Web Site URL link to open the production site in a browser window and notice the

URL in the address bar.

Figure 45

Application running in the production environment

Note: If you visit the production site shortly after its promotion, the DNS name might not

be ready. If you encounter a DNS error (404), wait a few minutes and try again. Keep in

mind that Windows Azure creates DNS name entries dynamically and that the changes

might take few minutes to propagate.

Summary

By completing this, you have explored the basic elements of Windows Azure applications. You have

seen that services consist of one or more web roles and worker roles. You have learnt about

Windows Azure storage services and in particular, blob, table and queue services. Finally, you have

explored a basic architectural pattern for cloud applications that allows front-end processes to

communicate with back-end processes using queues.

 74

 S.Sharmili Priyadarsini

Glossary

1. API – Application Programming Interface.

2. Azure - An operating system for the cloud developed by Microsoft Corporation that provides

computation, storage, Application development and automated service management.

3. Blobs – Storage space in azure those are stored in a container. The blobs are of two types

viz: page and block.

4. Block – it is a type of blob. It has semantics.

5. Cloud Computing- The term cloud means Internet; it got its name through its diagrammatic

representation in the books. Computation in a virtual environment i.e. in the internet and

performing partial or complete computational activities in the internet at a remote machine

is called as cloud computing.

6. CTP – Community Technology Preview that provides two instances viz: Web roles and

Worker roles.

7. Data center – Storage area managed for all the applications provided by Microsoft live.

8. Fabric controllers- Controls the Fabric and is comprised of 6 to 7 machines in order to

manage and control the large group of machines i.e. fabric.

9. Fabric- the set of machines dedicated to Windows Azure is organized into a fabric.

10. HTTP – Hyper Text Transfer Protocol, for the client-server communication in the cloud.

11. IIS – Internet Information Services.

12. ISV – Independent Software Vendor, (ISV) could create an application that targets

business users, an approach that’s often referred to as Software as a Service (SaaS).

13. Live Services-Through the Live Framework provides access to data from Microsoft’s live

applications and others. The Live Framework also allows synchronizing this data across

desktops and devices, finding and downloading applications, and more.

14. Load balances – They are used to manage the traffic and load in the cloud when the demand

for particular service is high.

15. Microsoft .NET Services- Offers distributed infrastructure services to cloud-based and

local applications.

16. Microsoft SQL Services- Provides data services in the cloud based on SQL Server.

17. Page- it is a type of blob. It is a random read/write.

18. Queues – The storage units in which the messages are placed.

19. Tables – The storage units in azure, which are the collection of entities. Entities must have a

Partition Key and Row Key.

20. VM- Virtual Machine, Provides independent platform irrespective of Heterogeneity.

21. Web Role – The Web role instance that receives this request can write a message into a

queue describing the work to be done

22. Windows Azure- Provides a Windows-based environment for running applications and

storing data on servers in Microsoft data centers.

23. Worker Role – A Worker role instance that’s waiting on this queue can then read the

message and carry out the task it specifies.

 75

 S.Sharmili Priyadarsini

References:
 www.windowsazure.com

 http://channel9.msdn.com/learn

 Hosting.com

 World Economic forum – weforum.org

 http://pluralsight.com

 INTRODUCING THE AZURE SERVICES PLATFORM, “AN EARLY LOOK AT

WINDOWS AZURE, .NET SERVICES, SQL SERVICES, AND LIVE SERVICES”

DAVID CHAPPELL.

 “INTRODUCING WINDOWS AZURE”, DAVID CHAPPELL.

 WWW.microsoft.com

http://www.windowsazure.com/
http://channel9.msdn.com/learn
http://pluralsight.com/
http://www.microsoft.com/

