Chapter 1:   Introduction

What is an Operating System?

* A program that acts as an intermediary between a user of a computer and the

   computer hardware. 

* Operating system goals:

· Execute user programs and make solving user problems easier.

· Make the computer system convenient to use.

* Use the computer hardware in an efficient manner.
Computer System Components

1. Hardware – provides basic computing resources (CPU, memory, I/O devices).

2. Operating system – controls and coordinates the use of the hardware among the 

     various application programs for the various users.

3. Applications programs – define the ways in which the system resources are used to 

    solve the computing problems of the users (compilers, database systems, video games, 

    business programs).

4. Users (people, machines, other computers). 
Abstract View of System Components

Operating System Definitions

· Resource allocator – manages and allocates resources.

· Control program – controls the execution of user programs and operations of I/O devices .

· Kernel – the one program running at all times (all else being application programs).

Mainframe Systems
· Reduce setup time by batching similar jobs

· Automatic job sequencing – automatically transfers control from one job to another.  First rudimentary operating system.

· Resident monitor

· initial control in monitor 

· control transfers to job 

· when job completes control transfers pack to monitor

Memory Layout for a Simple Batch System

Multiprogrammed Batch Systems

     Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them. 

OS Features Needed for Multiprogramming
· I/O routine supplied by the system.

· Memory management – the system must allocate the memory to several jobs.

· CPU scheduling – the system must choose among several jobs ready to run.

· Allocation of devices.

Time-Sharing Systems–Interactive Computing 
· The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).

· A job swapped in and out of memory to the disk.

· On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next “control statement” from the user’s keyboard.

· On-line system must be available for users to access data and code.

Desktop Systems
· Personal computers – computer system dedicated to a single user.

· I/O devices – keyboards, mice, display screens, small printers.

· User convenience and responsiveness.

· Can adopt technology developed for larger operating system’ often individuals have sole use of computer and do not need advanced CPU utilization of protection features.

· May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

· Multiprocessor systems with more than on CPU in close communication.

· Tightly coupled system – processors share memory and a clock; communication usually takes place through the shared memory.

· Advantages of parallel system: 

· Increased throughput

· Economical 

· Increased reliability

· graceful degradation

· fail-soft systems
· Symmetric multiprocessing (SMP)
· Each processor runs and identical copy of the operating system.

· Many processes can run at once without performance deterioration.

· Most modern operating systems support SMP

· Asymmetric multiprocessing
· Each processor is assigned a specific task; master processor schedules and allocated work to slave processors.

· More common in extremely large systems

Symmetric Multiprocessing Architecture

Distributed Systems
· Distribute the computation among several physical processors.

· Loosely coupled system – each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.

· Advantages of distributed systems.

· Resources Sharing 

· Computation speed up – load sharing 

· Reliability

· Communications

· Requires networking infrastructure.

· Local area networks (LAN) or Wide area networks (WAN)

· May be either client-server or peer-to-peer systems.

General Structure of Client-Server

Clustered Systems

· Clustering allows two or more systems to share storage.

· Provides high reliability.

· Asymmetric clustering: one server runs the application while other servers’ standby.

· Symmetric clustering: all N hosts are running the application

Real-Time Systems
· Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.

· Well-defined fixed-time constraints.

· Real-Time systems may be either hard or soft real-time.

· Hard real-time:

· Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)

· Conflicts with time-sharing systems, not supported by general-purpose operating systems.

· Soft real-time

· Limited utility in industrial control of robotics

· Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.

Handheld Systems
· Personal Digital Assistants (PDAs)

· Cellular telephones

· Issues:

· Limited memory

· Slow processors

· Small display screens.

Computing Environments
· Traditional computing

· Web-Based Computing

· Embedded Computing

Migration of Operating-System Concepts and Features
Chapter 4:  Processes

· Process Concept

· Process Scheduling

· Operations on Processes

· Cooperating Processes

· Interprocess Communication

· Communication in Client-Server Systems

Process Concept
· An operating system executes a variety of programs:

· Batch system – jobs

· Time-shared systems – user programs or tasks

· Textbook uses the terms job and process almost interchangeably.

· Process – a program in execution; process execution must progress in sequential fashion.

· A process includes:

· program counter 

· stack

· data section

Process State
· As a process executes, it changes state
· new:  The process is being created.

· running:  Instructions are being executed.

· waiting:  The process is waiting for some event to occur.

· ready:  The process is waiting to be assigned to a process.

· terminated:  The process has finished execution.

Diagram of Process State
Process Control Block (PCB)

Information associated with each process.

· Process state

· Program counter

· CPU registers

· CPU scheduling information

· Memory-management information

· Accounting information

· I/O status information

Process Control Block (PCB)

CPU Switch from Process to Process

CPU Switch From Process to Process

Process Scheduling Queues

· Job queue – set of all processes in the system.

· Ready queue – set of all processes residing in main memory, ready and waiting to execute.

· Device queues – set of processes waiting for an I/O device.

· Process migration between the various queues.

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

· Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue.

· Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU.

· Short-term scheduler is invoked very frequently (milliseconds) ( (must be fast).

· Long-term scheduler is invoked very infrequently (seconds, minutes) ( (may be slow).

· The long-term scheduler controls the degree of multiprogramming.

· Processes can be described as either:

· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts.

· CPU-bound process – spends more time doing computations; few very long CPU bursts.

Addition of Medium Term Scheduling

Context Switch

· When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process.

· Context-switch time is overhead; the system does no useful work while switching.

· Time dependent on hardware support.

Process Creation
· Parent process create children processes, which, in turn create other processes, forming a tree of processes.

· Resource sharing

· Parent and children share all resources.

· Children share subset of parent’s resources.

· Parent and child share no resources.

· Execution

· Parent and children execute concurrently.

· Parent waits until children terminate.

· Address space

· Child duplicate of parent.

· Child has a program loaded into it.

· UNIX examples

· fork system call creates new process

· exec system call used after a fork to replace the process’ memory space with a new program.

Processes Tree on a UNIX System
· Process Termination
· Process executes last statement and asks the operating system to decide it (exit).

· Output data from child to parent (via wait).

· Process’ resources are deallocated by operating system.

· Parent may terminate execution of children processes (abort).

· Child has exceeded allocated resources.

· Task assigned to child is no longer required.

· Parent is exiting.

· Operating system does not allow child to continue if its parent terminates.

· Cascading termination

· Cooperating Processes
· Independent process cannot affect or be affected by the execution of another process.

· Cooperating process can affect or be affected by the execution of another process

· Advantages of process cooperation

· Information sharing 

· Computation speed-up

· Modularity

· Convenience

· Producer-Consumer Problem
· Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process.

· unbounded-buffer places no practical limit on the size of the buffer.

· bounded-buffer assumes that there is a fixed buffer size.

Bounded-Buffer – Shared-Memory Solution
· Shared data

                    #define BUFFER_SIZE 10

                     Typedef struct

                    {

                        . . .

                     } item;

                     item buffer[BUFFER_SIZE];

                     int in = 0;

                     int out = 0;

· Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer Process 

item nextProduced;

while (1) {

          while (((in + 1) % BUFFER_SIZE) == out)

           ; /* do nothing */

           buffer[in] = nextProduced;

           in = (in + 1) % BUFFER_SIZE;

         }

Bounded-Buffer – Consumer Process
item nextConsumed;

while (1) {

              while (in == out)

              ; /* do nothing */

              nextConsumed = buffer[out];

              out = (out + 1) % BUFFER_SIZE;

            }

Interprocess Communication (IPC)
· Mechanism for processes to communicate and to synchronize their actions.

· Message system – processes communicate with each other without resorting to shared variables.

· IPC facility provides two operations:

· send(message) – message size fixed or variable 

· receive(message)

· If P and Q wish to communicate, they need to:

· establish a communication link between them

· exchange messages via send/receive

· Implementation of communication link

· physical (e.g., shared memory, hardware bus)

· logical (e.g., logical properties)

Implementation Questions
· How are links established?

· Can a link be associated with more than two processes?

· How many links can there be between every pair of communicating processes?

· What is the capacity of a link?

· Is the size of a message that the link can accommodate fixed or variable?

· Is a link unidirectional or bi-directional?

Direct Communication
· Processes must name each other explicitly:

· send (P, message) – send a message to process P

· receive(Q, message) – receive a message from process Q

· Properties of communication link

· Links are established automatically.

· A link is associated with exactly one pair of communicating processes.

· Between each pair there exists exactly one link.

· The link may be unidirectional, but is usually bi-directional.

Indirect Communication
· Messages are directed and received from mailboxes (also referred to as ports).

· Each mailbox has a unique id.

· Processes can communicate only if they share a mailbox.

· Properties of communication link

· Link established only if processes share a common mailbox

· A link may be associated with many processes.

· Each pair of processes may share several communication links.

· Link may be unidirectional or bi-directional.

· Operations

· create a new mailbox

· send and receive messages through mailbox

· destroy a mailbox

· Primitives are defined as:

· send(A, message) – send a message to mailbox A

· receive(A, message) – receive a message from mailbox A

· Mailbox sharing

· P1, P2, and P3 share mailbox A.

· P1 sends; P2 and P3 receive.

· Who gets the message?

· Solutions

· Allow a link to be associated with at most two processes.

· Allow only one process at a time to execute a receive operation.

· Allow the system to select arbitrarily the receiver.  Sender is notified who the receiver was.

Synchronization

· Message passing may be either blocking or non-blocking.

· Blocking is considered synchronous

· Non-blocking is considered asynchronous

· send and receive primitives may be either blocking or non-blocking.

Buffering

· Queue of messages attached to the link; implemented in one of three ways.

                1. Zero capacity – 0 messages
                     Sender must wait for receiver (rendezvous).

                2.  Bounded capacity – finite length of n messages
                     Sender must wait if link full.

                3  Unbounded capacity – infinite length 
                    Sender never waits.

Client-Server Communication

· Sockets

· Remote Procedure Calls

· Remote Method Invocation (Java)

Sockets

· A socket is defined as an endpoint for communication.

· Concatenation of IP address and port

· The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

· Communication consists between a pair of sockets.

Socket Communication

Remote Procedure Calls

· Remote procedure call (RPC) abstracts procedure calls between processes on networked systems.

· Stubs – client-side proxy for the actual procedure on the server.

· The client-side stub locates the server and marshalls the parameters.

· The server-side stub receives this message, unpacks the marshalled parameters, and peforms the procedure on the server

Execution of RPC

Remote Method Invocation
Marshalling Parameters

Unit 2…Threads

· Overview

· Multithreading Models

· Threading Issues

· Pthreads

· Solaris 2 Threads

· Windows 2000 Threads

· Linux Threads

· Java Threads

Single and Multithreaded Processes
Benefits

· Responsiveness

· Resource Sharing

· Economy

· Utilization of MP Architectures

User Threads

· Thread management done by user-level threads library

· Examples

· POSIX Pthreads

· Mach C-threads

· Solaris threads
Kernel Threads

· Supported by the Kernel

· Examples


- Windows 95/98/NT/2000

 
- Solaris


- Tru64 UNIX


- BeOS


- Linux

Multithreading Models

· Many-to-One

· One-to-One

· Many-to-Many

Many-to-One

· Many user-level threads mapped to single kernel thread.

· Used on systems that do not support kernel threads.

One-to-On

· Each user-level thread maps to kernel thread.

· Examples


- Windows 95/98/NT/2000
- OS/2

Many-to-Many Model

· Allows many user level threads to be mapped to many kernel threads.

· Allows the operating system to create a sufficient number of kernel threads.

· Solaris 2 

· Windows NT/2000 with the ThreadFiber package

Threading Issues

· Semantics of fork () and exec () system calls.

· Thread cancellation.

· Signal handling

· Thread pools

· Thread specific data

Pthreads

· a POSIX standard (IEEE 1003.1c) API for thread creation and synchronization.

· API specifies behavior of the thread library; implementation is up to development of the library.

· Common in UNIX operating systems.

Solaris 2 Threads
Solaris Process
Windows 2000 Threads

· Implements the one-to-one mapping.

· Each thread contains


- a thread id


- register set


- separate user and kernel stacks


- private data storage area

Linux Threads

· Linux refers to them as tasks rather than threads.

· Thread creation is done through clone () system call.

· Clone() allows a child task to share the address space of the parent task (process)

Java Threads

· Java threads may be created by:

· Extending Thread class

· Implementing the Runnable interface

· Java threads are managed by the JVM.

Java Thread States 
CPU Scheduling

· Basic Concepts

· Scheduling Criteria 

· Scheduling Algorithms

· Multiple-Processor Scheduling

· Real-Time Scheduling

· Algorithm Evaluation

Basic Concepts

· Maximum CPU utilization obtained with multiprogramming

· CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait.

· CPU burst distribution

Alternating Sequence of CPU and I/O Bursts

Histogram of CPU-burst Times
CPU Scheduler

· Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.

· CPU scheduling decisions may take place when a process:

· Switches from running to waiting state.

· Switches from running to ready state.

· Switches from waiting to ready.

· Terminates.

· Scheduling under 1 and 4 is nonpreemptive.

· All other scheduling is preemptive.
Dispatcher

· Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:

· switching context

· switching to user mode

· jumping to the proper location in the user program to restart that program

· Dispatch latency – time it takes for the dispatcher to stop one process and start another running.

Scheduling Criteria

· CPU utilization – keep the CPU as busy as possible

· Throughput – # of processes that complete their execution per time unit

· Turnaround time – amount of time to execute a particular process

· Waiting time – amount of time a process has been waiting in the ready queue

· Response time – amount of time it takes from when a request was submitted until the first response is produced, not output  (for time-sharing environment)

Optimization Criteria

· Max CPU utilization

· Max throughput

· Min turnaround time 

· Min waiting time 

· Min response time

First-Come, First-Served (FCFS) Scheduling
Process
     Burst Time




   P1


24



   P2 


  3



  P3


  3 

· Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

· Waiting time for P1  = 0; P2  = 24; P3 = 27

· Average waiting time:  (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order



 P2 , P3 , P1 .

· The Gantt chart for the schedule is:

· Waiting time for P1 = 6; P2 = 0; P3 = 3
· Average waiting time:   (6 + 0 + 3)/3 = 3

· Much better than previous case.

· Convoy effect short process behind long process

Shortest-Job-First (SJR) Scheduling

· Associate with each process the length of its next CPU burst.  Use these lengths to schedule the process with the shortest time.

· Two schemes: 

· nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst.

· preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt.  This scheme is know as the 
Shortest-Remaining-Time-First (SRTF).

· SJF is optimal – gives minimum average waiting time for a given set of processes.

Example of Non-Preemptive SJF

Process
Arrival Time
Burst Time


   P1

     0.0

      7



   P2

     2.0

      4



   P3

     4.0

      1



   P4

     5.0

      4

· SJF (non-preemptive)

· Average waiting time = (0 + 6 + 3 + 7)/4 - 4
Example of Preemptive SJF

Process
Arrival Time
Burst Time


P1


0.0
7



 P2


2.0
4



 P3


4.0
1



 P4


5.0
4

· SJF (preemptive)

· Average waiting time = (9 + 1 + 0 +2)/4 - 3
Determining Length of Next CPU Burst

· Can only estimate the length.

· Can be done by using the length of previous CPU bursts, using exponential averaging.

Prediction of the Length of the Next CPU Burst
Examples of Exponential Averaging
· ( =0

· (n+1 = (n

· Recent history does not count.

· ( =1

·  (n+1 = tn

· Only the actual last CPU burst counts.

· If we expand the formula, we get:

(n+1 = ( tn+(1 - () ( tn -1 + …

    

   
     +(1 - ( )j ( tn -1 + …

    

     
   +(1 - ( )n=1 tn (0

· Since both ( and (1 - () are less than or equal to 1, each successive term has less weight than its predecessor.

Priority Scheduling
· A priority number (integer) is associated with each process

· The CPU is allocated to the process with the highest priority (smallest integer ( highest priority).

· Preemptive

· nonpreemptive

· SJF is a priority scheduling where priority is the predicted next CPU burst time.

· Problem ( Starvation – low priority processes may never execute.

· Solution ( Aging – as time progresses increase the priority of the process.

Round Robin (RR)
· Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.  After this time has elapsed, the process is preempted and added to the end of the ready queue.

· If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once.  No process waits more than (n-1)q time units.

· Performance

· q large ( FIFO

· q small ( q must be large with respect to context switch, otherwise overhead is too high.

Example of RR with Time Quantum = 20
Process
Burst Time



P1
53



 P2
 17



 P3
68



 P4
 24

· The Gantt chart is: 

· Typically, higher average turnaround than SJF, but better response.

Time Quantum and Context Switch Time
Turnaround Time Varies With The Time Quantum

Multilevel Queue

· Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

· Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

· Scheduling must be done between the queues.

· Fixed priority scheduling; (i.e., serve all from foreground then from background).  Possibility of starvation.

· Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR

· 20% to background in FCFS 

Multilevel Queue Scheduling
Multilevel Feedback Queue

· A process can move between the various queues; aging can be implemented this way.

· Multilevel-feedback-queue scheduler defined by the following parameters:

· number of queues

· scheduling algorithms for each queue

· method used to determine when to upgrade a process

· method used to determine when to demote a process

· method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

· Three queues: 

· Q0 – time quantum 8 milliseconds

· Q1 – time quantum 16 milliseconds

· Q2 – FCFS

· Scheduling

· A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds.  If it does not finish in 8 milliseconds, job is moved to queue Q1.

· At Q1 job is again served FCFS and receives 16 additional milliseconds.  If it still does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available.

Homogeneous processors within a multiprocessor.

Load sharing 

Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing.

Real-Time Scheduling

· Hard real-time systems – required to complete a critical task within a guaranteed amount of time.

· Soft real-time computing – requires that critical processes receive priority over less fortunate ones.

Dispatch Latency

Algorithm Evaluation
· Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm  for that workload.

· Queueing models

· Implementation

Evaluation of CPU Schedulers by Simulation
Solaris 2 Scheduling
Windows 2000 Priorities
Process Synchronization

· Background

· The Critical-Section Problem

· Synchronization Hardware

· Semaphores

· Classical Problems of Synchronization

· Critical Regions

· Monitors

· Synchronization in Solaris 2 & Windows 2000

Background
· Concurrent access to shared data may result in data inconsistency.

· Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes.

· Shared-memory solution to bounded-butter problem (Chapter 4) allows at most n – 1 items in buffer at the same time.  A solution, where all N buffers are used is not simple.

· Suppose that we modify the producer-consumer code by adding a variable counter, initialized to 0 and incremented each time a new item is added to the buffer

Bounded-Buffer 
· Shared data

#define BUFFER_SIZE 10

typedef struct {




. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

· Producer process 



item nextProduced;



while (1) {




while (counter == BUFFER_SIZE)





; /* do nothing */




buffer[in] = nextProduced;




in = (in + 1) % BUFFER_SIZE;




counter++;



}

· Consumer process 



item nextConsumed;



while (1) {




while (counter == 0)





; /* do nothing */




nextConsumed = buffer[out];




out = (out + 1) % BUFFER_SIZE;




counter--;



}

· The statements
 
counter++;
 
counter--; 
must be performed atomically.

· Atomic operation means an operation that completes in its entirety without interruption.

· The statement “count++” may be implemented in machine language as:
           register1 = counter


           register1 = register1 + 1
                        counter = register1

· The statement “count—” may be implemented as:
 
register2 = counter
 
register2 = register2 – 1
 
  counter = register2

· If both the producer and consumer attempt to update the buffer concurrently, the assembly language statements may get interleaved.

· Interleaving depends upon how the producer and consumer processes are scheduled.

· Assume counter is initially 5. One interleaving of statements is:
 
producer: register1 = counter (register1 = 5)
 
producer: register1 = register1 + 1 (register1 = 6)
 
consumer: register2 = counter (register2 = 5)
 
consumer: register2 = register2 – 1 (register2 = 4)
 
producer: counter = register1 (counter = 6)
 
consumer: counter = register2 (counter = 4)

· The value of count may be either 4 or 6, where the correct result should be 5.

Race Condition
· Race condition: The situation where several processes access – and manipulate shared data concurrently. The final value of the shared data depends upon which process finishes last.

· To prevent race conditions, concurrent processes must be synchronized.

The Critical-Section Problem
· n processes all competing to use some shared data

· Each process has a code segment, called critical section, in which the shared data is accessed.

· Problem – ensure that when one process is executing in its critical section, no other process is allowed to execute in its critical section.

Solution to Critical-Section Problem
Mutual Exclusion.  If process Pi is executing in its critical section, then no other processes can be executing in their critical sections.

2.
Progress.  If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely.

3.
Bounded Waiting.  A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.

· Assume that each process executes at a nonzero speed 

· No assumption concerning relative speed of the n processes

Initial Attempts to Solve Problem
· Only 2  processes, P0 and P1

· General structure of process Pi (other process Pj)



do {



entry section





critical section




exit section




reminder section



} while (1);

· Processes may share some common variables to synchronize their actions.

Algorithm 1
· Shared variables: 

· int turn;
initially turn = 0

· turn - i ( Pi can enter its critical section

· Process Pi


do {




while (turn != i) ;





critical section




turn = j;





reminder section



} while (1);

· Satisfies mutual exclusion, but not progress

Algorithm 2
· Shared variables

· boolean flag[2];
initially flag [0] = flag [1] = false.

· flag [i] = true ( Pi ready to enter its critical section

· Process Pi


do {




flag[i] := true;


while (flag[j]) ;





critical section




flag [i] = false;





remainder section



} while (1);

· Satisfies mutual exclusion, but not progress requirement.

Algorithm 3
· Combined shared variables of algorithms 1 and 2.

· Process Pi



do {




flag [i]:= true;


turn = j;


while (flag [j] and turn = j) ;





critical section




flag [i] = false;





remainder section



} while (1);

· Meets all three requirements; solves the critical-section problem for two processes.

Bakery Algorithm
Critical section for n processes

· Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section.

· If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served first.

· The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

· Notation <( lexicographical order (ticket #, process id #)

· (a,b) < c,d) if a < c or if a = c and b < d
· max (a0,…, an-1) is a number, k, such that k ( ai for i - 0, 
…, n – 1

· Shared data



boolean choosing[n];



int number[n];

    Data structures are initialized to false and 0 respectively

do { 

choosing[i] = true;


number[i] = max(number[0], number[1], …, number [n – 1])+1;


choosing[i] = false;


for (j = 0; j < n; j++) {




while (choosing[j]) ; 




while ((number[j] != 0) && (number[j,j] < number[i,i])) ;


}



critical section


number[i] = 0;



remainder section

} while (1);
Synchronization Hardware
· Test and modify the content of a word atomically


boolean TestAndSet(boolean &target) {




boolean rv = target;




tqrget = true;




return rv;



}

Mutual Exclusion with Test-and-Set
· Shared data: 

boolean lock = false;

· Process Pi


do {




while (TestAndSet(lock)) ;





critical section




lock = false;





remainder section



}

Synchronization Hardware 
· Atomically swap two variables.



void Swap(boolean &a, boolean &b) {




boolean temp = a;




a = b;




b = temp;



}

Mutual Exclusion with Swap
· Shared data (initialized to false): 

boolean lock;



boolean waiting[n];

· Process Pi


do {




key = true;




while (key == true) 






Swap(lock,key);





critical section




lock = false;





remainder section

}

Semaphores
· Synchronization tool that does not require busy waiting.

· Semaphore S – integer variable

· can only be accessed via two indivisible (atomic) operations



wait (S):  




while S( 0 do no-op;



S--;



signal (S): 




S++;
Critical Section of n Processes
· Shared data:


   semaphore mutex; //initially mutex = 1

· Process Pi: 
do {
    wait(mutex);
        critical section

 
    signal(mutex);
        remainder section
} while (1);

Semaphore Implementation
· Define a semaphore as a record



typedef struct {



   int value;

   struct process *L;

} semaphore;
· Assume two simple operations:

· block suspends the process that invokes it.

· wakeup(P) resumes the execution of a blocked process P.

Implementation
· Semaphore operations now defined as 



wait(S):



S.value--;




if (S.value < 0) { 







add this process to S.L;





block;




}


signal(S): 


S.value++;




if (S.value <= 0) {







remove a process P from S.L;





wakeup(P);




}

Semaphore as a General Synchronization Tool
· Execute B in Pj only after A executed in Pi

· Use semaphore flag initialized to 0

· Code:



Pi
Pj



 ( 
 (


A
wait(flag)



signal(flag)
B
Deadlock and Starvation
· Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes.

· Let S and Q be two semaphores initialized to 1



P0
P1



wait(S);
wait(Q);



wait(Q);
wait(S);



 (
 (


signal(S);
signal(Q);



signal(Q)
signal(S);

· Starvation  – indefinite blocking.  A process may never be removed from the semaphore queue in which it is suspended.

Two Types of Semaphores
· Counting semaphore – integer value can range over an unrestricted domain.

· Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement.

· Can implement a counting semaphore S as a binary semaphore

Implementing S as a Binary Semaphore
· Data structures:



binary-semaphore S1, S2;



int C:  

· Initialization:



S1 = 1



S2 = 0



C = initial value of semaphore S

Implementing S
· wait operation



wait(S1);



C--;



if (C < 0) {





signal(S1);





wait(S2);



}



signal(S1);

· signal operation



wait(S1);



C ++;



if (C <= 0)




signal(S2);



else




signal(S1);

Classical Problems of Synchronization
· Bounded-Buffer Problem

· Readers and Writers Problem

· Dining-Philosophers Problem

Bounded-Buffer Problem
· Shared data
semaphore full, empty, mutex;
Initially:
full = 0, empty = n, mutex = 1

Bounded-Buffer Problem Producer Process
do { 
…
produce an item in nextp




 …



wait(empty);




wait(mutex);




 …




add nextp to buffer





 …




signal(mutex);




signal(full);



} while (1);


Bounded-Buffer Problem Consumer Process
do { 


wait(full)




wait(mutex);



 …

remove an item from buffer to nextc




 …


signal(mutex);




signal(empty);





 …




consume the item in nextc





 …



} while (1);

Readers-Writers Problem
· Shared data
semaphore mutex, wrt;
Initially
mutex = 1, wrt = 1, readcount = 0

Readers-Writers Problem Writer Process
wait(wrt);



 …



writing is performed


 …

signal(wrt);

Readers-Writers Problem Reader Process
wait(mutex);



readcount++;




if (readcount == 1)





wait(rt);



signal(mutex);





 …


reading is performed





 …

wait(mutex);



readcount--;



if (readcount == 0)




signal(wrt);
signal(mutex):

Dining-Philosophers Problem
· Shared data 



semaphore chopstick[5];

Initially all values are 1

Dining-Philosophers Problem 
· Philosopher i:



do {




wait(chopstick[i])




wait(chopstick[(i+1) % 5])





 …


eat





 …




signal(chopstick[i]);




signal(chopstick[(i+1) % 5]);





 …think …




} while (1);

Critical Regions
· High-level synchronization construct

· A shared variable v of type T, is declared as:



v: shared T

· Variable v accessed only inside statement



region v when B do S
where B is a boolean expression.

· While statement S is being executed, no other process can access variable v. 

· Regions referring to the same shared variable exclude each other in time.

· When a process tries to execute the region statement, the Boolean expression B is evaluated.  If B is true, statement S is executed.  If it is false, the process is delayed until B becomes true and no other process is in the region associated with v.

Example – Bounded Buffer
· Shared data:



struct buffer {




int pool[n];




int count, in, out;



}

Bounded Buffer Producer Process
· Producer process inserts nextp into the shared buffer




region buffer when( count < n) {



pool[in] = nextp;



in:= (in+1) % n;



count++;


}

Bounded Buffer Consumer Process
· Consumer process removes an item from the shared buffer and puts it in nextc



region buffer when (count > 0) {



nextc = pool[out];


out = (out+1) % n;


count--;

}

Implementation region x when B do S
· Associate with the shared variable x, the following variables:



semaphore mutex, first-delay, second-delay;
     int first-count, second-count;

· Mutually exclusive access to the critical section is provided by mutex.

· If a process cannot enter the critical section because the Boolean expression B is false, it initially waits on the first-delay semaphore; moved to the second-delay semaphore before it is allowed to reevaluate B.

Implementation
· Keep track of the number of processes waiting on first-delay and second-delay, with first-count and second-count respectively.

· The algorithm assumes a FIFO ordering in the queuing of processes for a semaphore.

· For an arbitrary queuing discipline, a more complicated implementation is required.

Monitors
· High-level synchronization construct that allows the safe sharing of an abstract data type among concurrent processes.




monitor monitor-name




{




shared variable declarations





procedure body P1 (…) {






. . .


}





procedure body P2 (…) {






. . .

} 





procedure body Pn (…) {






 . . .
} 








{initialization code

}
}
· To allow a process to wait within the monitor, a condition variable must be declared, as



condition x, y;

· Condition variable can only be used with the operations wait and signal.

· The operation



x.wait();
means that the process invoking this operation is suspended until another process invokes



x.signal();

· The x.signal operation resumes exactly one suspended process.  If no process is suspended, then the signal operation has no effect.


Schematic View of a Monitor
Monitor With Condition Variables
Dining Philosophers Example
monitor dp 


{



enum {thinking, hungry, eating} state[5];



condition self[5];



void pickup(int i) 

// following slides



void putdown(int i) 
// following slides



void test(int i) 

// following slides



void init() {




for (int i = 0; i < 5; i++)





state[i] = thinking;
}}
Dining Philosophers
void pickup(int i) {



state[i] = hungry;



test[i];



if (state[i] != eating)




self[i].wait();


}


void putdown(int i) {



state[i] = thinking;



// test left and right neighbors



test((i+4) % 5);



test((i+1) % 5);
}

Dining Philosophers
void test(int i) {



if ( (state[(I + 4) % 5] != eating) &&



  (state[i] == hungry) &&



  (state[(i + 1) % 5] != eating)) {




state[i] = eating;




self[i].signal();}}


Monitor Implementation Using Semaphores
· Variables 



semaphore mutex;  // (initially  = 1)



semaphore next;     // (initially  = 0)



int next-count = 0;

· Each external procedure F will be replaced by




wait(mutex);




     …




  body of F;




     …




if (next-count > 0)





signal(next)




else 





signal(mutex);

· Mutual exclusion within a monitor is ensured.

Monitor Implementation
· For each condition variable x, we  have:



semaphore x-sem; // (initially  = 0)



int x-count = 0;

· The operation x.wait can be implemented as:



x-count++;



if (next-count > 0)




signal(next);



else




signal(mutex);



wait(x-sem);



x-count--;

· The operation x.signal can be implemented as:



if (x-count > 0) {




next-count++;




signal(x-sem);




wait(next);




next-count--;



}


· Conditional-wait construct: x.wait(c);

· c – integer expression evaluated when the wait operation is executed.

· value of c (a priority number) stored with the name of the process that is suspended.

· when x.signal is executed, process with smallest associated priority number is resumed next.

· Check two conditions to establish correctness of system: 

· User processes must always make their calls on the monitor in a correct sequence.

· Must ensure that an uncooperative process does not ignore the mutual-exclusion gateway provided by the monitor, and try to access the shared resource directly, without using the access protocols.

Solaris 2 Synchronization
· Implements a variety of locks to support multitasking, multithreading (including real-time threads), and multiprocessing.

· Uses adaptive mutexes for efficiency when protecting data from short code segments.

· Uses condition variables and readers-writers locks when longer sections of code need access to data. 

· Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer lock.

Windows 2000 Synchronization
· Uses interrupt masks to protect access to global resources on uniprocessor systems.

· Uses spinlocks on multiprocessor systems.

· Also provides dispatcher objects which may act as wither mutexes and semaphores.

· Dispatcher objects may also provide events. An event acts much like a condition variable.

Unit 3--Chapter 8:  Deadlocks
The Deadlock Problem
· A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

· Example 

· System has 2 tape drives.

· P1 and P2 each hold one tape drive and each needs another one.

· Example 

· semaphores A and B, initialized to 1

 
  
                  P0

               P1

wait (A);

wait(B)

wait (B);

wait(A)

Bridge Crossing Example

· Traffic only in one direction.

· Each section of a bridge can be viewed as a resource.

· If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).

· Several cars may have to be backed up if a deadlock occurs.

· Starvation is possible.

System Model

· Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

· Each resource type Ri has Wi instances.

· Each process utilizes a resource as follows:

· request 

· use 

· release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

· Mutual exclusion:  only one process at a time can use a resource.

· Hold and wait:  a process holding at least one resource is waiting to acquire additional resources held by other processes.

· No preemption:  a resource can be released only voluntarily by the process holding it, after that process has completed its task.

· Circular wait:  there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by 

P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph
A set of vertices V and a set of edges E.

· V is partitioned into two types:

· P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

· R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

· request edge – directed edge P1 ( Rj

· assignment edge – directed edge Rj ( Pi
* Process

* Resource Type with 4 instances

* Pi requests instance of Rj
* Pi is holding an instance of Rj

Example of a Resource Allocation Graph
Resource Allocation Graph With A Deadlock
Resource Allocation Graph With A Cycle But No Deadlock
Basic Facts

· If graph contains no cycles ( no deadlock.

· If graph contains a cycle (
· if only one instance per resource type, then deadlock.

· if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

· Ensure that the system will never enter a deadlock state.

· Allow the system to enter a deadlock state and then recover.

· Ignore the problem and pretend that deadlocks never occur in the system; used by most operating systems, including UNIX.

Deadlock Prevention
Restrain the ways request can be made.

· Mutual Exclusion – not required for sharable resources; must hold for nonsharable resources.

· Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any other resources.

· Require process to request and be allocated all its resources before it begins execution, or allow process to request resources only when the process has none.

· Low resource utilization; starvation possible.

· No Preemption –

· If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released.

· Preempted resources are added to the list of resources for which the process is waiting.

· Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting.

· Circular Wait – impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration.

Deadlock Avoidance

Requires that the system has some additional a priori information 
available.

· Simplest and most useful model requires that each process declare the maximum number of resources of each type that it may need.

· The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition.

· Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes.

Safe State

· When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state.

· System is in safe state if there exists a safe sequence of all processes. 

· Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can still request can be satisfied by currently available resources + resources held by all the Pj, with j<I.

· If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished.

· When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and terminate. 

· When Pi terminates, Pi+1 can obtain its needed resources, and so on. 

Basic Facts

· If a system is in safe state ( no deadlocks.

· If a system is in unsafe state ( possibility of deadlock.

· Avoidance ( ensure that a system will never enter an unsafe state. 

Resource-Allocation Graph Algorithm
· Claim edge Pi ( Rj indicated that process Pj may request resource Rj; represented by a dashed line.

· Claim edge converts to request edge when a process requests a resource.

· When a resource is released by a process, assignment edge reconverts to a claim edge.

· Resources must be claimed a priori in the system.

Safe, Unsafe , Deadlock State 

Resource-Allocation Graph For Deadlock Avoidance

Unsafe State In Resource-Allocation Graph
Banker’s Algorithm
· Multiple instances.

· Each process must a priori claim maximum use.

· When a process requests a resource it may have to wait.  

· When a process gets all its resources it must return them in a finite amount of time.

Data Structures for the Banker’s Algorithm 

Let n = number of processes, and m = number of resources types.

· Available:  Vector of length m. If available [j] = k, there are k instances of resource type Rj available.

· Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k instances of resource type Rj.

· Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently allocated k instances of Rj.
· Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.  Initialize:

Work = Available

Finish [i] = false for i - 1,3, …, n.
2.Find and i such that both: 

(a) Finish [i] = false
(b) Needi ( Work

If no such i exists, go to step 4.

3.Work = Work + Allocationi
 
Finish[i] = true
 
go to step 2.

4.If Finish [i] == true for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If Requesti [j] = k then process Pi wants k instances of resource type Rj.

1.If Requesti ( Needi go to step 2.  Otherwise, raise error condition, since 

    process has exceeded its maximum claim.

2.If Requesti ( Available, go to step 3.  Otherwise Pi  must wait, since 

    resources are not available.

3.Pretend to allocate requested resources to Pi by modifying the state as 

   follows:





Available = Available = Requesti;





Allocationi = Allocationi + Requesti;





Needi = Needi – Requesti;;

· If safe ( the resources are allocated to Pi. 

· If unsafe ( Pi must wait, and the old resource-allocation state is restored
Example of Banker’s Algorithm
· processes P0 through P4; 3 resource types A 
(10 instances), 
B (5instances, and C (7 instances).

· Snapshot at time T0:




Allocation
Max
 Available



  A B C           
A B C     A B C



P0
   0 1 0
            7 5 3 
   3 3 2



 P1
   2 0 0    3 2 2  



 P2
   3 0 2 
9 0 2



 P3
   2 1 1 
2 2 2



 P4
   0 0 2
            4 3 3  


· The content of the matrix. Need is defined to be Max – Allocation.

Need



A B C



 P0
7 4 3 



 P1
1 2 2 



 P2
6 0 0 



 P3
0 1 1



 P4
4 3 1 

· The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria. 

Example P1 Request (1,0,2) 

· Check that Request ( Available (that is, (1,0,2) ( (3,3,2) ( true.




Allocation
Need
Available



A B C     
A B C
A B C 



P0
0 1 0       
 7 4 3 
2 3 0



P1
3 0 2                    
0 2 0 




P2
3 0 1 
              6 0 0 



P3
2 1 1       
0 1 1



P4
0 0 2 
              4 3 1 

· Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety requirement. 

· Can request for (3,3,0) by P4 be granted?

· Can request for (0,2,0) by P0 be granted?

Deadlock Detection
· Allow system to enter deadlock state 

· Detection algorithm

· Recovery scheme

Single Instance of Each Resource Type

· Maintain wait-for graph

· Nodes are processes.

· Pi ( Pj if Pi is waiting for Pj.

· Periodically invoke an algorithm that searches for a cycle in the graph.

· An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the number of vertices in the graph.

Resource-Allocation Graph and Wait-for Graph

Several Instances of a Resource Type
· Available:  A vector of length m indicates the number of available resources of each type.

· Allocation:  An n x m matrix defines the number of resources of each type currently allocated to each process.

· Request:  An n x m matrix indicates the current request  of each process.  If Request [ij] = k, then process Pi is requesting k more instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi ( 0, then 
     Finish[i] = false;otherwise, Finish[i] = true.

2.Find an index i such that both:

(a)Finish[i] == false
(b)Requesti ( Work
    If no such i exists, go to step 4. 

3. Work = Work + Allocationi
 
Finish[i] = true
 
go to step 2.

4. If Finish[i] == false, for some i, 1 ( i (  n, then the system is in deadlock state.   

    Moreover, if Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked state.  

Example of Detection Algorithm
· Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances).

· Snapshot at time T0:




Allocation
Request
Available



A B C 
A B C 
A B C



P0
0 1 0 
0 0 0 
0 0 0



P1
2 0 0 
2 0 2



P2
3 0 3
0 0 0 



P3
2 1 1 
1 0 0 



P4
0 0 2 
0 0 2

· Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i. 

· P2 requests an additional instance of type C.




Request



A B C



 P0
0 0 0



 P1
2 0 1



P2
0 0 1



P3
1 0 0 



P4
0 0 2

· State of system?

· Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; requests.

· Deadlock exists, consisting of processes P1,  P2, P3, and P4.

Detection-Algorithm Usage

· When, and how often, to invoke depends on:

· How often a deadlock is likely to occur?

· How many processes will need to be rolled back?

· one for each disjoint cycle

· If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we would not be able to tell which of the many deadlocked processes “caused” the deadlock.

Recovery from Deadlock:  Process Termination
· Abort all deadlocked processes.

· Abort one process at a time until the deadlock cycle is eliminated.

· In which order should we choose to abort?

· Priority of the process.

· How long process has computed, and how much longer to completion.

· Resources the process has used.

· Resources process needs to complete.

· How many processes will need to be terminated. 

· Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

· Selecting a victim – minimize cost.

· Rollback – return to some safe state, restart process for that state.

· Starvation –  same process may always be picked as victim, include number of rollback in cost factor.

Combined Approach to Deadlock Handling
· Combine the three basic approaches

· prevention

· avoidance

· detection

   
allowing the use of the optimal approach for each of resources in the system.

· Partition resources into hierarchically ordered classes.

· Use most appropriate technique for handling deadlocks within each class.

Traffic Deadlock for Exercise 8.4
Chapter 9:  Memory Management
Background
· Program must be brought into memory and placed within a process for it to be run.

· Input queue – collection of processes on the disk that are waiting to be brought into memory to run the program.

· User programs go through several steps before being run. 

Binding of Instructions and Data to Memory
Address binding of instructions and data to memory addresses can happen at three different stages.

· Compile time:  If memory location known a priori, absolute code can be generated; must recompile code if starting location changes.

· Load time:  Must generate relocatable code if memory location is not known at compile time.

· Execution time:  Binding delayed until run time if the process can be moved during its execution from one memory segment to another.  Need hardware support for address maps (e.g., base and limit registers). 

Multistep Processing of a User Program 
Logical vs. Physical Address Space
· The concept of a logical address space that is bound to a separate physical address space is central to proper memory management.

· Logical address – generated by the CPU; also referred to as virtual address.

· Physical address – address seen by the memory unit.

· Logical and physical addresses are the same in compile-time and load-time address-binding schemes; logical (virtual) and physical addresses differ in execution-time address-binding scheme.

Memory-Management Unit (MMU)

· Hardware device that maps virtual to physical address.

· In MMU scheme, the value in the relocation register is added to every address generated by a user process at the time it is sent to memory.

· The user program deals with logical addresses; it never sees the real physical addresses.

Dynamic relocation using a relocation register
Dynamic Loading

· Routine is not loaded until it is called

· Better memory-space utilization; unused routine is never loaded.

· Useful when large amounts of code are needed to handle infrequently occurring cases.

· No special support from the operating system is required implemented through program design.

Dynamic Linking
· Linking postponed until execution time.

· Small piece of code, stub, used to locate the appropriate memory-resident library routine.

· Stub replaces itself with the address of the routine, and executes the routine.

· Operating system needed to check if routine is in processes’ memory address.

· Dynamic linking is particularly useful for libraries.

Overlays
· Keep in memory only those instructions and data that are needed at any given time.

· Needed when process is larger than amount of memory allocated to it.

· Implemented by user, no special support needed from operating system, programming design of overlay structure is complex

Overlays for a Two-Pass Assembler
Swapping
· A process can be swapped temporarily out of memory to a backing store, and then brought back into memory for continued execution.

· Backing store – fast disk large enough to accommodate copies of all memory images for all users; must provide direct access to these memory images.

· Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority process can be loaded and executed.

· Major part of swap time is transfer time; total transfer time is directly proportional to the amount of memory swapped.

· Modified versions of swapping are found on many systems, i.e., UNIX, Linux, and Windows.

Schematic View of Swapping

Contiguous Allocation
· Main memory usually into two partitions:

· Resident operating system, usually held in low memory with interrupt vector.

· User processes then held in high memory.

· Single-partition allocation

· Relocation-register scheme used to protect user processes from each other, and from changing operating-system code and data.

· Relocation register contains value of smallest physical address; limit register contains range of logical addresses – each logical address must be less than the limit register. 

Hardware Support for Relocation and Limit Registers (cod…)
· Multiple-partition allocation

· Hole – block of available memory; holes of various size are scattered throughout memory.

· When a process arrives, it is allocated memory from a hole large enough to accommodate it.

· Operating system maintains information about:
a) allocated partitions    b) free partitions (hole)

Dynamic Storage-Allocation Problem
How to satisfy a request of size n from a list of free holes.

· First-fit:  Allocate the first hole that is big enough.

· Best-fit:  Allocate the smallest hole that is big enough; must search entire list, unless ordered by size.  Produces the smallest leftover hole.

· Worst-fit:  Allocate the largest hole; must also search entire list.  Produces the largest leftover hole.

First-fit and best-fit better than worst-fit in terms of speed and storage utilization.

Fragmentation
· External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous.

· Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used.

· Reduce external fragmentation by compaction

· Shuffle memory contents to place all free memory together in one large block.

· Compaction is possible only if relocation is dynamic, and is done at execution time.

· I/O problem

· Latch job in memory while it is involved in I/O.

· Do I/O only into OS buffers.

Paging

· Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available.

· Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes).

· Divide logical memory into blocks of same size called pages.

· Keep track of all free frames.

· To run a program of size n pages, need to find n free frames and load program.

· Set up a page table to translate logical to physical addresses. 

· Internal fragmentation.

Address Translation Scheme
· Address generated by CPU is divided into:

· Page number (p) – used as an index into a page table which contains base address of each page in physical memory.

· Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit.

Address Translation Architecture 
Paging Example 


Free Frames
Implementation of Page Table
· Page table is kept in main memory.

· Page-table base register (PTBR) points to the page table.

· Page-table length register (PRLR) indicates size of the page table.

· In this scheme every data/instruction access requires two memory accesses.  One for the page table and one for the data/instruction.

· The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

Associative Memory
· Associative memory – parallel search 


Address translation (A´, A´´)

· If A´ is in associative register, get frame # out. 

· Otherwise get frame # from page table in memory

Paging Hardware With TLB
Effective Access Time
· Associative Lookup = ( time unit

· Assume memory cycle time is 1 microsecond

· Hit ratio – percentage of times that a page number is found in the associative registers; ration related to number of associative registers.

· Hit ratio = (
· Effective Access Time (EAT)



EAT = (1 + () ( + (2 + ()(1 – ()




= 2 + ( – (
Memory Protection
· Memory protection implemented by associating protection bit with each frame.

· Valid-invalid bit attached to each entry in the page table:

· “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal page.

· “invalid” indicates that the page is not in the process’ logical address space.

Valid (v) or Invalid (i) Bit In A Page Table

Page Table Structure
· Hierarchical Paging

· Hashed Page Tables

· Inverted Page Tables

Hierarchical Page Tables
· Break up the logical address space into multiple page tables.

· A simple technique is a two-level page table.

Two-Level Paging Example
· A logical address (on 32-bit machine with 4K page size) is divided into:

· a page number consisting of 20 bits.

· a page offset consisting of 12 bits.

· Since the page table is paged, the page number is further divided into:

· a 10-bit page number. 

· a 10-bit page offset.

· Thus, a logical address is as follows:
where pi is an index into the outer page table, and p2 is the displacement within the page of the outer page table.

Two-Level Page-Table Scheme
Address-Translation Scheme

· Address-translation scheme for a two-level 32-bit paging architecture

Hashed Page Tables
· Common in address spaces > 32 bits.

· The virtual page number is hashed into a page table. This page table contains a chain of elements hashing to the same location.

· Virtual page numbers are compared in this chain searching for a match. If a match is found, the corresponding physical frame is extracted.

Hashed Page Table

Inverted Page Table
· One entry for each real page of memory.

· Entry consists of the virtual address of the page stored in that real memory location, with information about the process that owns that page.

· Decreases memory needed to store each page table, but increases time needed to search the table when a page reference occurs.

· Use hash table to limit the search to one — or at most a few — page-table entries.

Inverted Page Table Architecture
Shared Pages
· Shared code

· One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems). 

· Shared code must appear in same location in the logical address space of all processes.

· Private code and data 

· Each process keeps a separate copy of the code and data.

· The pages for the private code and data can appear anywhere in the logical address space.

Shared Pages Example

Segmentation
· Memory-management scheme that supports user view of memory. 

· A program is a collection of segments.  A segment is a logical unit such as:



main program,



procedure, 



function,



method,



object,



local variables, global variables,



common block,



stack,



symbol table, arrays

User’s View of a Program
Logical View of Segmentation
Segmentation Architecture 
· Logical address consists of a two tuple:



<segment-number, offset>,

· Segment table – maps two-dimensional physical addresses; each table entry has:

· base – contains the starting physical address where the segments reside in memory.

· limit – specifies the length of the segment.

· Segment-table base register (STBR) points to the segment table’s location in memory.

· Segment-table length register (STLR) indicates number of segments used by a program;


                  segment number s is legal if s < STLR.

· Relocation.

· dynamic

· by segment table 

· Sharing.

· shared segments

· same segment number 

· Allocation.

· first fit/best fit

· external fragmentation

· Protection.  With each entry in segment table associate:

· validation bit = 0 ( illegal segment

· read/write/execute privileges

· Protection bits associated with segments; code sharing occurs at segment level.

· Since segments vary in length, memory allocation is a dynamic storage-allocation problem.

· A segmentation example is shown in the following diagram

Segmentation Hardware
Example of Segmentation
Sharing of Segments
UNIT- IV

Chapter 10:  Virtual Memory

Background
· Virtual memory – separation of user logical memory from physical memory.

· Only part of the program needs to be in memory for execution.

· Logical address space can therefore be much larger than physical address space.

· Allows address spaces to be shared by several processes.

· Allows for more efficient process creation.

· Virtual memory can be implemented via:

· Demand paging 

· Demand segmentation

Virtual Memory That is Larger Than Physical Memory
Demand Paging
· Bring a page into memory only when it is needed.

· Less I/O needed

· Less memory needed 

· Faster response

· More users

· Page is needed ( reference to it

· invalid reference ( abort

· not-in-memory ( bring to memory

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit
· With each page table entry a valid–invalid bit is associated
(1 ( in-memory, 0 ( not-in-memory)

· Initially valid–invalid but is set to 0 on all entries.

· Example of a page table snapshot.

· During address translation, if valid–invalid bit in page table entry is 0 ( page fault.

Page Table When Some Pages Are Not in Main Memory

Page Fault
· If there is ever a reference to a page, first reference will trap to 
OS ( page fault

· OS looks at another table to decide:

· Invalid reference ( abort.

· Just not in memory.

· Get empty frame.

· Swap page into frame.

· Reset tables, validation bit = 1.

· Restart instruction:  Least Recently Used 

· block move

· auto increment/decrement location

Steps in Handling a Page Fault


What happens if there is no free frame?
· Page replacement – find some page in memory, but not really in use, swap it out.

· algorithm

· performance – want an algorithm which will result in minimum number of page faults.

· Same page may be brought into memory several times.

Performance of Demand Paging
· Page Fault Rate 0 ( p ( 1.0

· if p = 0 no page faults 

· if p = 1, every reference is a fault

· Effective Access Time (EAT)



EAT = (1 – p) x memory access



+ p (page fault overhead




+ [swap page out ]




+ swap page in




+ restart overhead)

Demand Paging Example

· Memory access time = 1 microsecond

· 50% of the time the page that is being replaced has been modified and therefore needs to be swapped out.

· Swap Page Time = 10 msec = 10,000 msec

· EAT = (1 – p) x 1 + p (15000)

· 1 + 15000P      (in msec)

Page Replacement
· Prevent over-allocation of memory by modifying page-fault service routine to include page replacement.

· Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk.

· Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory.

Need For Page Replacement
Basic Page Replacement
1. Find the location of the desired page on disk.

2. Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement 
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame. Update the page and frame tables.

4. Restart the process.

Page Replacement
Page Replacement Algorithms
· Want lowest page-fault rate.

· Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string.

· In all our examples, the reference string is 

· 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Graph of Page Faults Versus The Number of Frames
First-In-First-Out (FIFO) Algorithm
· Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

· 3 frames (3 pages can be in memory at a time per process)

· 4 frames

· FIFO Replacement – Belady’s Anomaly

· more frames ( less page faults

FIFO Page Replacement
FIFO Illustrating Belady’s Anamoly
Optimal Algorithm
· Replace page that will not be used for longest period of time.

· 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

· How do you know this?

· Used for measuring how well your algorithm performs.

Optimal Page Replacement
Least Recently Used (LRU) Algorithm
· Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

· Counter implementation

· Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter.

· When a page needs to be changed, look at the counters to determine which are to change.

LRU Page Replacement
· Stack implementation – keep a stack of page numbers in a double link form:

· Page referenced:

· move it to the top

· requires 6 pointers to be changed

· No search for replacement

Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms
· Reference bit

· With each page associate a bit, initially = 0

· When page is referenced bit set to 1.

· Replace the one which is 0 (if one exists).  We do not know the order, however.

· Second chance

· Need reference bit.

· Clock replacement.

· If page to be replaced (in clock order) has reference bit = 1.  then:

· set reference bit 0.

· leave page in memory.

· replace next page (in clock order), subject to same rules.

Second-Chance (clock) Page-Replacement Algorithm
Counting Algorithms
· Keep a counter of the number of references that have been made to each page.

· LFU Algorithm:  replaces page with smallest count.

· MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used.

Allocation of Frames
· Each process needs minimum number of pages.

· Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

· instruction is 6 bytes, might span 2 pages.

· 2 pages to handle from.

· 2 pages to handle to.

· Two major allocation schemes.

· fixed allocation

· priority allocation

Fixed Allocation
· Equal allocation – e.g., if 100 frames and 5 processes, give each 20 pages.

· Proportional allocation – Allocate according to the size of process.

Priority Allocation
· Use a proportional allocation scheme using priorities rather than size.

· If process Pi generates a page fault,

· select for replacement one of its frames.

· select for replacement a frame from a process with lower priority number.

Global vs. Local Allocation
· Global replacement – process selects a replacement frame from the set of all frames; one process can take a frame from another.

· Local replacement – each process selects from only its own set of allocated frames.

Thrashing
· If a process does not have “enough” pages, the page-fault rate is very high.  This leads to:

· low CPU utilization.

· operating system thinks that it needs to increase the degree of multiprogramming.

· another process added to the system.

· Thrashing ( a process is busy swapping pages in and out.

· Why does paging work?
Locality model

· Process migrates from one locality to another.

· Localities may overlap.

· Why does thrashing occur?
( size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model
· ( ( working-set window ( a fixed number of page references 
Example:  10,000 instruction

· WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ( (varies in time)

· if ( too small will not encompass entire locality.

· if ( too large will encompass several localities.

· if ( = ( ( will encompass entire program.

· D = ( WSSi ( total demand frames 

· if D > m ( Thrashing

· Policy if D > m, then suspend one of the processes.

Keeping Track of the Working Set
· Approximate with interval timer + a reference bit

· Example: ( = 10,000

· Timer interrupts after every 5000 time units.

· Keep in memory 2 bits for each page.

· Whenever a timer interrupts copy and sets the values of all reference bits to 0.

· If one of the bits in memory = 1 ( page in working set.

· Why is this not completely accurate?

· Improvement = 10 bits and interrupt every 1000 time units.
Page-Fault Frequency Scheme

· Establish “acceptable” page-fault rate.

· If actual rate too low, process loses frame.

· If actual rate too high, process gains frame.

Chapter 11:  File-System Interface

File Concept

· Contiguous logical address space

· Types: 

· Data

· numeric

· character

· binary

· Program

File Structure
· None - sequence of words, bytes

· Simple record structure

· Lines 

· Fixed length

· Variable length

· Complex Structures

· Formatted document

· Relocatable load file


· Can simulate last two with first method by inserting appropriate control characters.

· Who decides:

· Operating system

· Program

File Attributes
· Name – only information kept in human-readable form.

· Type – needed for systems that support different types.

· Location – pointer to file location on device.

· Size – current file size.

· Protection – controls who can do reading, writing, executing.

· Time, date, and user identification – data for protection, security, and usage monitoring.

· Information about files are kept in the directory structure, which is maintained on the disk.

File Operations

· Create

· Write

· Read

· Reposition within file – file seek

· Delete

· Truncate

· Open(Fi) – search the directory structure on disk for entry Fi, and move the content of entry to memory.

· Close (Fi) – move the content of entry Fi in memory to directory structure on disk.

File Types – Name, Extension
Access Methods

· Sequential Access



read next



write next 



reset



no read after last write




(rewrite)

· Direct Access



read n



write n



position to n




read next




write next 



rewrite n


n = relative block number

Sequential-access File

Simulation of Sequential Access on a Direct-access File
Example of Index and Relative Files
Directory Structure
· collection of nodes containing information about all files.

Both the directory structure and the files reside on disk. Backups of these two structures are kept on tapes.

A Typical File-system Organization
Information in a Device Directory

· Name 

· Type

· Address 

· Current length

· Maximum length

· Date last accessed (for archival)

· Date last updated (for dump)

· Owner ID (who pays)

· Protection information (discuss later)

Operations Performed on Directory
· Search for a file

· Create a file

· Delete a file

· List a directory

· Rename a file

· Traverse the file system

Organize the Directory (Logically) to Obtain

Efficiency – locating a file quickly.

· Naming – convenient to users.

· Two users can have same name for different files.

· The same file can have several different names.

· Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …)

Single-Level Directory
· A single directory for all users.

Naming problem,  Grouping problem

Two-Level Directory
· Separate directory for each user.

· Path name

· Can have the same file name for different user

· Efficient searching

· No grouping capability

Tree-Structured Directories
· Efficient searching

· Grouping Capability

· Current directory (working directory)

· cd /spell/mail/prog

· type list

· Absolute or relative path name

· Creating a new file is done in current directory.

· Delete a file



rm <file-name>

· Creating a new subdirectory is done in current directory.



mkdir <dir-name>


Example:  if in current directory   /mail



mkdir count

Deleting “mail” ( deleting the entire subtree rooted by “mail”.

Acyclic-Graph Directories
· Have shared subdirectories and files.

· Two different names (aliasing)

· If dict deletes list ( dangling pointer.


Solutions:

· Backpointers, so we can delete all pointers.
Variable size records a problem.

· Backpointers using a daisy chain organization.

· Entry-hold-count solution.

General Graph Directory
· How do we guarantee no cycles?

· Allow only links to file not subdirectories.

· Garbage collection.

· Every time a new link is added use a cycle detection
algorithm to determine whether it is OK.

UNIT – V

Chapter 12: File System Implementation

File-System Structure
· File structure

· Logical storage unit

· Collection of related information

· File system resides on secondary storage (disks).

· File system organized into layers.

· File control block – storage structure consisting of information about a file.

Layered File System
A Typical File Control Block
In-Memory File System Structures
· The following figure illustrates the necessary file system structures provided by the operating systems.

· Figure 12-3(a) refers to opening a file.

· Figure 12-3(b) refers to reading a file.

In-Memory File System Structures


Virtual File Systems
· Virtual File Systems (VFS) provide an object-oriented way of implementing file systems.

· VFS allows the same system call interface (the API) to be used for different types of file systems.

· The API is to the VFS interface, rather than any specific type of file system.

Schematic View of Virtual File System


Directory Implementation
· Linear list of file names with pointer to the data blocks.

· simple to program

· time-consuming to execute

· Hash Table – linear list with hash data structure.

· decreases directory search time

· collisions – situations where two file names hash to the same location

· fixed size

Allocation Methods
· An allocation method refers to how disk blocks are allocated for files:

· Contiguous allocation

· Linked allocation

· Indexed allocation

Contiguous Allocation
· Each file occupies a set of contiguous blocks on the disk.

· Simple – only starting location (block #) and length (number of blocks) are required.

· Random access.

· Wasteful of space (dynamic storage-allocation problem).

· Files cannot grow.

Contiguous Allocation of Disk Space

Extent-Based Systems
· Many newer file systems (I.e. Veritas File System) use a modified contiguous allocation scheme.

· Extent-based file systems allocate disk blocks in extents. 

· An extent is a contiguous block of disks. Extents are allocated for file allocation. A file consists of one or more extents.

Linked Allocation
· Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk.

· Simple – need only starting address

· Free-space management system – no waste of space 

· No random access

· Mapping

              Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by MS-DOS and OS/2.

Linked Allocation
File-Allocation Table

Indexed Allocation
· Brings all pointers together into the index block.
· Logical view.

index table

Example of Indexed Allocation
· Need index table

· Random access

· Dynamic access without external fragmentation, but have overhead of index block.

· Mapping from logical to physical in a file of maximum size of 256K words and block size of 512 words.  We need only 1 block for index table.

Q = displacement into index table

R = displacement into block

· Mapping from logical to physical in a file of unbounded length (block size of 512 words).

· Linked scheme – Link blocks of index table (no limit on size

Q1 = block of index table

R1 is used as follows:

Q2 = displacement into block of index table

R2 displacement into block of file:

· Two-level index (maximum file size is 5123)

Q1 = displacement into outer-index

R1 is used as follows:

Q2 = displacement into block of index table

R2 displacement into block of file:

Combined Scheme:  UNIX (4K bytes per block)



Free-Space Management
· Bit vector   (n blocks)

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

· Bit map requires extra space.  Example:



block size = 212 bytes



disk size = 230 bytes (1 gigabyte)



n = 230/212 = 218 bits (or 32K bytes)

· Easy to get contiguous files 

· Linked list (free list)

· Cannot get contiguous space easily

· No waste of space

· Grouping 

· Counting

· Need to protect:

· Pointer to free list

· Bit map

· Must be kept on disk

· Copy in memory and disk may differ.

· Cannot allow for block[i] to have a situation where bit[i] = 1 in memory and bit[i] = 0 on disk.

· Solution:

· Set bit[i] = 1 in disk.

· Allocate block[i]

· Set bit[i] = 1 in memory

Linked Free Space List on Disk
Efficiency and Performance
· Efficiency dependent on:

· disk allocation and directory algorithms

· types of data kept in file’s directory entry

· Performance

· disk cache – separate section of main memory for frequently used blocks

· free-behind and read-ahead – techniques to optimize sequential access

· improve PC performance by dedicating section of memory as virtual disk, or RAM disk.

Various Disk-Caching Locations


Page Cache
· A page cache caches pages rather than disk blocks using virtual memory techniques.

· Memory-mapped I/O uses a page cache.

· Routine I/O through the file system uses the buffer (disk) cache.

· This leads to the following figure.

I/O Without a Unified Buffer Cache
Unified Buffer Cache
· A unified buffer cache uses the same page cache to cache both memory-mapped pages and ordinary file system I/O.

I/O Using a Unified Buffer Cache
Recovery
· Consistency checking – compares data in directory structure with data blocks on disk, and tries to fix inconsistencies.

· Use system programs to back up data from disk to another storage device (floppy disk, magnetic tape).

· Recover lost file or disk by restoring data from backup.

Chapter 13:  I/O Systems

I/O Hardware
· Incredible variety of I/O devices

· Common concepts

· Port 

· Bus (daisy chain or shared direct access)

· Controller (host adapter)

· I/O instructions control devices

· Devices have addresses, used by 

· Direct I/O instructions

· Memory-mapped I/O

A Typical PC Bus Structure

Device I/O Port Locations on PCs (partial)
Polling
· Determines state of device 

· command-ready

· busy

· Error

· Busy-wait cycle to wait for I/O from device

Interrupts
· CPU Interrupt request line triggered by I/O device

· Interrupt handler receives interrupts

· Maskable to ignore or delay some interrupts

· Interrupt vector to dispatch interrupt to correct handler

· Based on priority

· Some unmaskable

· Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table
Direct Memory Access
· Used to avoid programmed I/O for large data movement 

· Requires DMA controller

· Bypasses CPU to transfer data directly between I/O device and memory 

Six Step Process to Perform DMA Transfer
Chapter 14:  Mass-Storage Systems

Disk Structure
· Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. 

· The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.

· Sector 0 is the first sector of the first track on the outermost cylinder.

· Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost.

Disk Scheduling

· The operating system is responsible for using hardware efficiently — for the disk drives, this means having a fast access time and disk bandwidth.

· Access time has two major components

· Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector.

· Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.

· Minimize seek time

· Seek time ( seek distance

· Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer

· Several algorithms exist to schedule the servicing of disk I/O requests. 

· We illustrate them with a request queue (0-199).


98, 183, 37, 122, 14, 124, 65, 67


Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders.



SSTF
· Selects the request with the minimum seek time from the current head position.

· SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests.

· Illustration shows total head movement of 236 cylinders.

SCAN
· The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.

· Sometimes called the elevator algorithm.

· Illustration shows total head movement of 208 cylinders.

C-SCAN

· Provides a more uniform wait time than SCAN.

· The head moves from one end of the disk to the other. servicing requests as it goes.  When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip.

· Treats the cylinders as a circular list that wraps around from the last cylinder to the first one.

C-LOOK
· Version of C-SCAN

· Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk. 

Selecting a Disk-Scheduling Algorithm
· SSTF is common and has a natural appeal

· SCAN and C-SCAN perform better for systems that place a heavy load on the disk.

· Performance depends on the number and types of requests.

· Requests for disk service can be influenced by the file-allocation method.

· The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary.

· Either SSTF or LOOK is a reasonable choice for the default algorithm.

Disk Management
· Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk controller can read and write.

· To use a disk to hold files, the operating system still needs to record its own data structures on the disk.

· Partition the disk into one or more groups of cylinders.

· Logical formatting or “making a file system”.

· Boot block initializes system.

· The bootstrap is stored in ROM.

· Bootstrap loader program.

· Methods such as sector sparing used to handle bad blocks.

