Std. - 11 (Semester-2) Maths (050) (E)

Time: 3 Hrs.

Sample Question Paper

Total Marks: 100

Instructions:

(1) Answer all the questions.

(2) Write your answers according to instructions given below with the questions.

(3) Start each Section from a new page and write answers of all questions in order.

SECTION - A

Given below 1 to 15 multiple choice questions. Each carrying one mark. Write the serial number [(A) OR (B) OR (C) OR (D)] in your answer-book of the alternative which you feel is the correct answer of the question.

[15]

"P(n) = $n^2 - n + 41$ is a prime is true for $n \in$

(A) {41m / m ∈ N}

(B) [82m / m ∈ N]

(C) {123m / m ∈ N}

(D) $\{m / m^3 - 6m^2 + 11m - 6 = 0\}$

If $|Z + [1.81]| \le 5$ then maximum value of $\sqrt[3]{|Z+4|}$ is ______ ($Z \in C$)

- (B) √27 (C) √64

Coefficient of x^{-4} in the expansion of $\left(x - \frac{1}{x^2}\right)^{17}$ is :

- (B) $\binom{16}{7} \binom{16}{6}$
- (C) $-\left\{ \begin{pmatrix} 16\\7 \end{pmatrix} + \begin{pmatrix} 16\\6 \end{pmatrix} \right\}$

The value of $\left(\frac{\cos ec10^{\circ} - sec10^{\circ}}{\cos ec10^{\circ} + sec10^{\circ}}\right) - \left(\frac{\sin 10^{\circ} - \cos 10^{\circ}}{\sin 10^{\circ} + \cos 10^{\circ}}\right) = \dots$

(A) 2tan55°

(C) 2tan35°

If $\tan\theta = -0.75$, $\frac{5\pi}{2} < \theta < 3\pi$ then p(20) is in the :

(A) IInd quadrant

- (B) IIIrd and IVth quadrant
- (C) Only in the IIIrd quadrant
- (D) Only in the IVth quadrant

6.	Value of $\sin \frac{\pi}{10}$	$+\cos\frac{\pi}{5}$	-	-yB) 11				
	(A) $\frac{\sqrt{5}-1}{4}$			(B)	$\sqrt{2.25}$			
	(C) √1.25			(D)	$\left(\frac{\sqrt{5}+1}{4}\right)$	$\left(\frac{\sqrt{5}-1}{4}\right)$		
7.	The general solution of the equation $\cos^{50}x - \sin^{50}x = 1$ is							
	(A) $\left\{k\pi + \frac{\pi}{2}\right\}$						$\frac{\pi}{2}/k \in \mathbb{Z}$	}
	(C) $\left\{\frac{k\pi}{4}/k\right\}$	Z $\left\{-\left\{2k\pi\right\}\right\}$	/ k ∈ Z}	(D)	ф			
8.	The perimeter If a is 1 then /	of AABC	is 6 times	the arithme	etic mean	of the sino	es of its a	ngles.
	(A) 60°	(B)	30°	(C)	90°	(D)	15°	
9.	3 + 4 + 8 + 9 + 13 + 14 + 18 + 19 + (upto 100 terms) =							
	(A) 12,500	(B)	12,650	(C)	12,600	(D)	12,550	
10.	The eccentricity for the Standard form of ellipse whose length of minor axis is equal							
	to the distance	between f	oci is					
	(A) $\frac{1}{\sqrt{2}}$	(B)	$\frac{\sqrt{2}}{3}$	(C)	$\frac{\sqrt{3}}{2}$	(D)	$\frac{2}{\sqrt{3}}$	
11.	A vector which	is in the	directions of	of (3, 6, 2)	and has ma	agnitude 4	9 is :	
	(A) $(\frac{3}{4}, \frac{6}{4}, \frac{2}{4})$				(12 24 0)			

(A)
$$\left(\frac{3}{7}, \frac{6}{7}, \frac{2}{7}\right)$$

(D) (147, 294, 98)

12. If P(1, 2, 1), Q(2, 3, 2), R(2, 1, 3), S(3, 2, 4) then

(A) $\overrightarrow{PQ} \cap \overrightarrow{RS}$ is single-ton

(B)
$$\overrightarrow{PQ} \cap \overrightarrow{RS} = \left\{ A(x, y, z) / A \in \overrightarrow{QP} \& A \in \overrightarrow{RS} \right\}$$

(C) $\overrightarrow{PQ} \perp \overrightarrow{RS}$

(D) $\overrightarrow{PQ}||\overrightarrow{RS}$

- 13. $x \to 5 \frac{x^m 5^m}{x 5} = 500$ then value of m is:

- 14. If $x \to 2$ $\frac{\lim_{x \to 2} \frac{x^2 (a+2)x + a}{x 2} = 2$ then value of a is
- (B) 1

- 15. If $f(x) = \cos^2 x$ then $f'(\pi/6) =$ _____.
 - (A) $\frac{\sqrt{3}}{2}$
- (B) $-\frac{1}{4}$ (C) $-\frac{\sqrt{3}}{2}$ (D) $\frac{1}{4}$

Answer the following 16 to 27 questions as directed in the question. Each carrying one mark.

[12]

- If α is complex number such that $\alpha^2 + \alpha + 1 = 0$ then show that $\alpha^{31} = \alpha$.
- "The inequality n! > 2n-1 is true for nonempty proper subset of N" Above statement for natural variable n is true or false? Why?
- 18. If $\frac{\sin (\alpha + \beta)}{\cos (\alpha \beta)} = \frac{1 m}{1 + m}$, then prove that $\tan (\frac{\pi}{4} \alpha) \tan (\frac{\pi}{4} \beta) = m$. $(m \neq -1)$
- 19. If $\sum_{i=1}^{3} \sin \theta_i = 3$, then find the value of $\sum_{i=1}^{3} (\cos \theta_i + \sin \theta_i)$.
- 20. If $\cos A + \cos B = a_1$ ਅਜੇ $\sin A + \sin B = a_2$ (where a_1 , $a_2 \neq 0$) then prove that $\sin(A + B) = \frac{2a_1a_2}{a_1^2 + a_2^2}$
- 21. If $\{a_n\}$ be a G.P. such that $4a_4 a_6 = 0$ and $a_2 + a_5 = 216$, then find the value of a_1 .
- Find the distance of the point (1, 2, 5) from X axis.
- 23. Find $x \to \pi/4$ $\frac{\lim_{x \to \pi/4} \sqrt{2}\cos x 1}{\cot x 1}$
- Find $\lim_{x\to 0} \frac{(1-\cos 2x) \cdot \sin 5x}{x^2 \sin 3x}$

25. Find
$$\lim_{x \to 0} \frac{\tan x^{\circ} - \sin x^{\circ}}{x^{3}}$$

OR

- 25. Find a and b if $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$
- 26. State the number of points in the interval (0, 2) at which f(x) = |4x 1| + |3x 1| + |x 1| + |x| is not differentiable.

OR

- 26. If f(a) = 2, f'(a) = 1, g(a) = -1, g'(a) = 2, then find the value of $x \to a$ $\lim_{x \to a} \frac{f(x) g(x) f(a) g(a)}{x^3 a^3}$, $(a \ne 0)$.
- 27. Find derivative of cotx at $x = \frac{5\pi}{4}$ from first principle.

OR

27. Find
$$\frac{d}{dx} \left\{ \frac{\sec x - \tan x + 3}{1 + 3\sec x + 3\tan x} \right\}$$
, $(x \neq (2k + 1) \frac{\pi}{2}, k \in \mathbb{Z})$

SECTION - C

Answer the following 28 to 37 questions as directed in the questions.
 Each carrying two marks.

[20]

- 28. Using principle of mathematical Induction prove that 41^n 1 is divisible by 40.
- 29. Prove that : $\frac{\sec^2 129^9 \csc^2 31^9}{\sec 51^9 \csc 31^9} = \csc 39^9 \sec 121^9$

OR

- 29. Prove that : $\csc\theta + \csc 2\theta + \csc 4\theta + \cot 4\theta = \cot \frac{\theta}{2}$.
- 30. Find all real X such that $\frac{3+2i\sin x}{1-2i\sin x}$ is real. Also find the number.
- 31. For x=0.5 the sum of all the terms in the expansion of $\left(1+\frac{1}{x}\right)^n$ is 6561 then find r and T_{r+1} for which T_{r+1} is greatest term in the expansion.
- 32. If $A = \tan 6^{\circ} \tan 42^{\circ}$ and $B = \cot 66^{\circ} \cot 78^{\circ}$, then prove that $\cos (A B) = 1$.
- 33. The equation psinx + cos2x = 2p-7 possesses non-empty solution set for which real values of p?

- 34. Find the length of a focal chord of the parabola $y^2 = 16x$, which make an angle $\frac{\pi}{12}$ with the axis of the parabola.
- 35. If C is the centre of the ellipse $9x^2 + 16y^2 = 144$ and S is one focus. Then find the ratio of CS to the length of semi major axis.

OR

- 35. If (asec θ , btan θ) and (asec ϕ , btan ϕ) are the ends of a focal chord of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then prove that $\tan \frac{\theta}{2} \tan \frac{\phi}{2} = \frac{e-1}{e+1}$.
- 36. Given that A(0, 7, 10), B(-1, 6, 6), C(-4, 9, 6) determine the type of Δ ABC.
- 37. Find $\lim_{x \to -1} \frac{\sqrt{x^5 + 1} \sqrt{x^3 + 1}}{\sqrt{x^7 + 1}}$ if it exists.

OR

37. Find
$$\lim_{x \to \pi} \frac{\sqrt{17 + \cos x} - 4}{(x - \pi)^2}$$

SECTION - D

- Answer the following 38 to 44 questions, each carrying three marks as directed in the questions. [21]
- 38. Solve: $\sqrt{3}\sin x = \sqrt{2} + \cos x$.
- 39. In a $\triangle ABC$, a = 2b and $|A B| = \pi/3$. Find C.
- 40. If $\sec(x + y)$, $\sec(x y)$ are in A.P., then prove that $\cos x = \pm \sqrt{2} \cos \frac{y}{2}$, (Where $\cos x \neq 1$ & $\cos y \neq 1$).

OF

- 40. Find the sum of the series: $1^2 2^2 + 3^2 4^2 + 2^2 + 3^2 4^2 + 2^2 + 2^2 30^2$.
- 41. An arch is in the form a semi ellipse. It is 10m wide and 4 m high at the centre. Find the height of the arch at a point 2 m from one end.
- 42. Determine whether the points A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1) are vertices of a quadrilateral or not? If they form a quadrilateral, then determine its type.
- 43. Find $\lim_{x \to \pi/2} \frac{2x \sin x \pi}{\cos^2 x + \cos x}$
- 44. If $f(x) = (lx^2 + mx + cosx)$ (n + pcotx), (where $lmnp \neq 0$, and $x \neq \frac{k\pi}{4}$, $K \in \mathbb{Z}$), then find f'(x).

SECTION - E

- Answer the following 45 to 47 questions each carrying four marks as directed in the questions.
- 45. Prove: $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 \frac{1}{n}$, $n \in \mathbb{N}$
- 45. If $a_1 = 1$, $a_2 = 11$ and $a_n = 2a_{n-1} + 3a_{n-2}$, $n \ge 3$ then prove that $n \in \mathbb{N}$ $a_n = 2(-1)^n + 3^n$ for $n \in \mathbb{N}$.
- 46. Find all the complex numbers $Z \in C R$, Satisfying the condition $\overline{Z} = Z^2$
- 47. If $y = \frac{x \sin x}{1 + \cos x}$ then find $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$

SECTION - F

- Answer the following 48 to 51 questions, each carrying five marks as directed in the questions.
- 48. Prove that $(2 + \sqrt{3})^7 + (2 \sqrt{3})^7 = 10084$ hence deduce that $10083 < (2 + \sqrt{3})^7 < 10084$ and $0 < (2 \sqrt{3})^7 < 1$.
- 49. Prove that $a\cot\left(\frac{2\pi}{3} x\right) b\tan\left(\frac{2\pi}{3} + x\right) = 0 \implies \sec 2x = 2\left(\frac{a b}{a + b}\right)$. (where $a \neq -b$)
- 49. If α and β are roots of $a\cos\theta$ + $b\sin\theta$ = c, then expressed the values of $\cos\alpha$ + $\cos\beta$ and $\cos\alpha$ · $\cos\beta$ in terms of a, b and c.
- 50. Prove $\cos x \cdot \cos 2x \cdot \cos 2^2 x \cdot \cos 2^3 x$ $\cos 2^{n-1} x = \frac{\sin 2^n x}{2^n \sin x}$ and use it to find the value of $\cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15} \cdot \cos \frac{14\pi}{15}$

OF

51. Product of first five consecutive terms of G.P. is 243. If the sum of the second and the fourth terms is 12.75, find these first five terms of this G.P.

