Roll No.

Total No. of Questions: 08]

[Total No. of Pages: 02

M.Tech.

ADVANCED MATHEMATICS

SUBJECT CODE: PEE - 507 / ELE - 507

Paper ID : [E0487]

[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

Maximum Marks: 100

Instruction to Candidates:

- 1) Attempt any Five questions.
- 2) All questions carry equal marks.
- Q1) a) Using Laplace transform, evaluate $\int_{0}^{t} e^{-t} \cdot \cos t \cdot dt$
 - b) Using convolution theorem, find $L^{-1}\left\{\frac{1}{s^2(s^2+a^2)}\right\}$.
- Q2) (a) Find the Z-transform of $^{n+p}C_p$.
 - (b) If $U(z) = \frac{2z^2 + 3z + 12}{(z-1)^4}$; find the value of u_2 and u_3 .
- Q3) (a) Write a note on 2 Dimensional Fast Fourier Analysis.
 - (b) Find the discrete Fourier transform of $u = \{\sin(ja)\}_{j=0}^{N-1}$.
- Q4) (a) Solve the system of equations

$$\frac{dx}{dt} + y = \sin t, \frac{dy}{dt} + x = \cos t$$
given that $x = 2 & y = 0$ when $t = 0$

(b) Write a note on matrix representation and state variable approach of difference equation.

Q5) (a) Determine whether the system $x^1 = -y^2$; $y^1 = 3x + 2x^3$ has a closed trajectory?

(b) Consider the system $X^1 = AX$, where $A = \begin{bmatrix} 1 & -3 \\ 2 & -1 + \epsilon \end{bmatrix}$ show that when $\epsilon = 0$, the critical point is a centre, stable but not asymptotically stable.

Q6) (a) Transform the BVP, into an integral equation $y'' - \sin x \ y' + e^y = x \text{ given that } y = 1, \ \frac{dy}{dx} = -1 \text{ when } x = 0.$

(b) Solve the integral equation : $\int_{0}^{x} y(t) y(x-t) dt = 4\sin 9x$

Q7) (a) If $f(x) = \begin{cases} 12x^3 - 21x^2 + 10x ; 0 \le x \le 1 \\ 0 ; \text{ otherwise} \end{cases}$ find $P\left(X \le \frac{1}{2}\right)$ and $P\left(X > \frac{1}{2}\right)$.

(b) A variate X has the probability distribution:

x	-3	6	9
P(X = x)	1/6	1/2	1/3

Find E(X), $E(X^2)$ and $E(2X + 1)^2$.

- Q8) (a) Two dice are thrown until a 7 is obtained. Find the most probable number of throws and also the expected number of throws.
 - (b) If X and Y are independent binomial variates $b\left(5,\frac{1}{2}\right)$ and $b\left(7,\frac{1}{8}\right)$ respectively.

Find P(X+Y=3).