

Math 1.1

I Semester M.Sc. Mathematics Examination, May 2011 ALGEBRA

Time: 3 Hours Max. Marks: 80

Note: 1) Answer any five questions.

- 2) All questions carry equal marks.
- 1. a) State and prove Lagrange theorem for finite groups.
 - b) Let $f: G \to G'$ be a group homomorphism. Then prove that ker f is a normal subgroup of G. Moreover prove that f is a one-one mapping if and only if ker $f = \{e\}$. (8+8)
- 2. a) Prove that every permutation $\sigma \in S_n$ can be expressed as a product of disjoint cycles.
 - b) Prove the class equation of the group G. (8+8)
- 3. a) State and prove the first Sylow theorem.
 - b) Show that any group of order $5^2.7^2$ is abelian. (8+8)
- 4. a) Show that any integral domain can be embedded in a field.
 - b) Let R be a commutative ring with identity. Then prove that R is a field if and only if the only ideals of R are {0} and R itself. (10+6)
- 5. a) State and prove the fundamental theorem of homomorphism for rings.
 - b) Let R be a commutative ring with identity. Prove that an ideal P in R is a prime ideal if and only if R/P is an integral domain. (8+8)
- 6. a) Prove that in a Unique factorization domain, an element is a prime if and only if it is irreducible.
 - b) Let F be a field and $f(x) \in F[x]$. Then prove that $\alpha \in F$ is a root of f(x) if and only if $(x \alpha)$ divides f(x). (8+8)
- 7. a) Let W be a subspace of a finite-dimensional vector space V. Then prove that W is finite dimensional and dim W < dim V.
 - b) If $F \subseteq K \subseteq L$ are fields, then prove that [L : F] = [L : K] [K : F]. (8+8)
- 8. a) Prove that any splitting field of a polynomial over F is a normal extension of F.
 - b) State and prove the Primitive Element Theorem. (8+8)