Reg. No. :

Question Paper Code: 20141

M.E./M.Tech. DEGREE EXAMINATION, JANUARY 2011.

First Semester

Communication Systems

(Common to Computer and Communication)

281109 — APPLIED MATHEMATICS FOR COMMUNICATION ENGINEERS

(Regulation 2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Prove that $J_{-n}(x) = (-1)^n J_n(x)$.
- 2. Prove that $J_n(x) = 0$ has no repeated root except at x = 0.
- 3. What are the necessary conditions for Cholesky decomposition of a matrix?
- 4. If A is a nonsingular matrix, then what is A^+ ?
- 5. If X is a continuous RV with pdf f(x) = 2x, 0 < x < 1 then find the pdf of the RV $Y = X^3$.
- 6. If the mean of a Poisson RV is 2, then what is its standard deviation?
- 7. If (X,Y) is a continuous two dimensional RV with joint pdf $f(x,y) = k(xy^2 + yx^2), \ 0 < x < 1, \ 0 < y < 2$. Find the value of k.
- 8. Prove that correlation coefficient is the geometric mean of regression coefficients.
- 9. What are the characteristics of a queuing system?
- 10. What do you mean by transient state and steady state queuing system?

PART B — (5 × 16 = 80 marks)

11. (a) (i) Prove that
$$e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} t^n J_n(x).$$
 (8)
(ii) Prove that $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{3-x^2}{x^2}\sin x - \frac{3}{x}\cos x\right].$ (8)

Or

(b) (i) Show that
$$x^n J_n(x)$$
 is a solution of the equation $xy'' + (1-2n)y' + xy = 0$. (8)

(ii) Show that
$$J_5(x) = \left(\frac{384}{x^4} - \frac{72}{x^2} - 1\right) J_1(x) + \left(\frac{12}{x} - \frac{192}{x^3}\right) J_0(x).$$
 (8)

12. (a) Construct a QR decomposition for the matrix
$$A = \begin{bmatrix} -4 & 2 & 2 \\ 3 & -3 & 3 \\ 6 & 6 & 0 \end{bmatrix}$$
. (16)

Or

			- 3	1	
			-2	1	
			-1	1	
(b)	Construct a singular value decomposition for the matrix $A =$	0	1	
			1	1	
			2	1	
			3	1	
				(16	3)

- 13. (a) (i) Find the moment generating function of geometric distribution and hence find its mean and variance. (8)
 - (ii) Buses arrive at a specified stop at 15 minutes intervals starting at 7 a.m. If a passenger arrives at the stop at a random time that is uniformly distributed between 7 and 7.30 am, find the probability that he waits
 - (1) less than 5 minutes for a bus and
 - (2) at least 12 minutes for a bus. (8)

 $\mathbf{2}$

- (b) (i) The number of monthly breakdowns of a computer is a RV having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month
 - (1) without a breakdown
 - (2) with only one breakdown
 - (3) with atleast one breakdown.
 - (ii) Suppose the life of automobile batteries is exponentially distributed with parameter $\lambda = 0.0001$ days,
 - (1) What is the probability that a battery will last more than 1200 days?
 - (2) What is the probability that a battery will last more than 1200 days given that it has already served 1000 days? (8)

14. (a) (i) For the following bivariate distribution of X and Y, find

- $(1) \quad P(X \le 2, Y = 2)$
- (2) $F_X(2)$
- $(3) \qquad P(Y=3)$
- $(4) \qquad P(X < 3, Y \le 4)$
- (5) $F_{Y}(3)$.

(8)

(8)

Y				
X	1	2	3	4
1	0.1	0	0.2	0.1
2	0.05	0.12	0.08	0.01
3	0.1	0.05	0.1	0.09

(ii) Let (X,Y) be a two dimensional continuous RV with joint pdf $f(x,y) = k x y e^{-(x^2+y^2)}; x \ge 0, y \ge 0.$

(1) Find the value of k

(2) Are X and Y independent? (8)

3

20141

- (b) (i) If X and Y are independent standard normal variates, find the probability distribution of $U = \frac{X}{Y}$. (8)
 - (ii) In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible.

Variance of X = 9, Regression equation: 8x - 10y + 66 = 0; 40x - 18y = 214. Find

- (1) The mean values of X and Y
- (2) The standard deviation of Y
- (3) The correlation coefficient between *X* and *Y*.
- 15. (a) Suppose people arrive to purchase tickets for a basket ball game at the average rate of 4 minutes. It takes an average of 10 seconds to purchase a tickets. If a sports fan arrives 2 minutes before the game starts and if it takes $1\frac{1}{2}$ minutes to reach the correct seat after the fan purchase a ticket,

then

- (i) Can the sports fan expect to be seated for the start of the game?
- (ii) What is the probability that the sports fan will be seated for the start of the game?
- (iii) How early must the fan arrive in order to be 99% sure of being seated for the start of the game? (Assume Poisson arrival rate and exponential service time) (16)

\mathbf{Or}

- (b) A supermarket has two girls serving at the counters. The customers arrive in a Poisson fashion at the rate of 12 per hour. The service time for each customer is exponential with mean 6 minutes. Find
 - (i) The probability that an arriving customer has to wait for service
 - (ii) The average number of customers in the system and
 - (iii) The average time spent by a customer in the supermarket. (16)

(8)