	Code	No: 09A52401]			R09				
	JAWAHARŁAŁ NEHRU TECHNOLOGICAŁ UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2012 MECHANICS OF FLUIDS AND HYDRAULIC MACHINERY (Automobile Engineering)									
89	89	Time: 3 hours	Answer any All Questions	Five Questions carry equal mark 	Max. Mark	s: 75	89			
	1.a)	Define Viscosity, S	Surface tension	and Vapor Pressur	e and explain t	heir influence				
89	by	A inverted U-tube manometer is connected to two horizontal pipes. A and B through which water is flowing. The vertical distance between the axes of these pipes 30 cm. When an oil of specific gravity 0.8 is used as a gauge fluid, the vertical heights of water columns in the two limbs of the inverted manometer (when measured from the respective centre lines of the pipes) are found to be								
		same and equal to	35 cm. Determir	the difference of	f pressure betwo	een the pipes.				
:	2.a)	The velocity comp $v = xy^2 - 2y - x^3/3$ irrotational flow. A pipe of 20 cm	onents in a two- 3. Show that the diameter conve	dimensional flow ese components rep eving 0:20 m ³ /sec o	are : $u = y^3/3 + present a possible of water has a$	$-2x - x^2y$ and ble case of an right angled				
		bend in a horizontal plane. Find the resultant force exerted on the bend if the pressure at inlet and outlet of the bend are 22.563 N/cm ² and 21.582 N/cm ² respectively. [15]								
89	3.a)	Derive an expression for calculating loss of head in a pipe flow due to i) Sudden enlargement, and (ii) Sudden contraction (iii) (iii) for the pipes of lengths 800 m, 600 m and 300 m and of diameter 400mm, 300 mm and 200 mm respectively are connected in series. The ends of the compound pipe is connected to two tanks, whose water surface levels are maintained at a difference of 15 m. Determine the rate of flow of water through the pipes if								
		f = 0.005. What wi f = 0.005, which re	ll be the diamete places the three	er of a single pipe of pipes	of length 1700	m? And [15]				
	4.	Derive an expression for efficiency of moving curved vane where jet enters one of its tip and leaves at other tip of the vane. [15]								
89	5.a) 	Classify the hydal general layout and What is a surge tan	schemes accord section of a high k? Discuss its fu	ing to available he n head scheme. Inction and workin	ad . Draw a ske	etch to show a ketch. [15]	89			
					89	89				

89	6.a) b)	Differentiate between Rädial and axial flöw turbines. The following data pertain to an inward flow reaction turbine: Diameter of wheel at inner periphery = 540 mm; Width of wheel at inner periphery = 60 mm; Diameter of wheel at outer periphery = 360 mm; Width of wheel at outer periphery = 90 mm; Area occupied by the vanes = 8% of the									
89	89	periphery; Guide vane angle = 25° to the tangent to the runner; Moving vane angle at inlet = 95° (vane inclined forward to the direction of motion); Exit angle = 30° ; Hydraulic losses = 10% of the supply head; Mechanical friction losses = 5% of the supply head; Pressure in the outer casing = 66 m more than that at discharge from the runner. Determine the following: (i) Speed of the runner (for no shocks at entry), and (ii) Power available at the turbine shaft. [15]									
89	7.a) b)	Define the terms: specific speed of a turbine; unit speed, unit power and unit rate of flow of a turbine. Derive the expressions for specific speed and unit speed. A 1/6 reduced scale model of a Francis turbine develops 7.5 KW of power under a head of 10 m. Its speed is 475 rpm. It consumes 90 lps of water. What is the overall efficiency of the model? Assuming the same efficiency for the prototype									
		machine, determin to work under a he	e its rpm, spec ad of 125 m.	cific speed, power o	utput and disc	harge if it has [15]					
	8.a) b)	Explain the term n The internal and ex 20 cm and 40 cm r	egative slip of a sternal diameters espectively. The	reciprocating pump s of the impeller of pump is running a). a centrifugal t 1200 rpm. Th	pump are ne vane angles					
		of the impeller at i impeller radially an impeller per kg. of	nlet and outlet a nd velocity of flo water.	re 20 [°] and 30 [°] respectively respectively respectively and 30 [°] respectively re	ctively. The w ermine the wor	ater enters the k done by the [15]					
			0	0000							
		89	89	89		89					
89	89					89	89				
89	89										
		89		89							