Enrol	lment	No.	

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (New) EXAMINATION – WINTER 2015

Subject Code:2132003Date:18/12/2015Subject Name: Design Concepts In Basic ElectronicsTotal Marks: 70Time: 2:30pm to 5:00pmTotal Marks: 70Instructions:Total Marks: 70

1 Attempt all

- Attempt all questions.
 Mala mitchle community
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a)

- 1 Convert (3254.64)8 into equivalent Binary and Hexadecimal.
- 2 Following arithmetic operation is correct for the base x. Find base x.

$$(21)_{x} + (44)_{x} + (32)_{x} + (13)_{x} = (143)_{x}$$

- 3 Represent $(786)_{10}$ and $(75)_{10}$ in equivalent BCD and add them showing BCD arithmetic.
- 4 If we want to implement 2 function at the same time what must be used out of decoder and multiplexer for the implementation.
- 5 Why look ahead carry generator is required?
- 6 Explain the importance of Gray code.
- 7 State points of difference between BCD and binary code.
- 8 Define peak inverse voltage of diode
- 9 What do you mean by ideal diode?
- 10 Why a filter circuit is required after rectifier?
- 11 What are the parameter on which current gain of transistor depends?
- 12 With help of output curve of transistor explain load line and Q point.
- 13 If transistor is to be operated as switch where must be the Q point located.
- 14 What is voltage multipliers?
- Q.2 (a) With circuit diagram and output waveform explain working of full wave bridge 03 rectifier
 - (b) Give the points of difference between half wave, Full wave, and Bridge 04 rectifier.
 - (c) Simplify the following Boolean function using Karnaugh map method and 07 realize with minimum NOR gates only.
 F (A,B,C,D) = ∑ (0,1,3,7,13,15)+ d (2,11,12,14)

OR

- (c) Design a combinational logic to convert given BCD to seven segment display 07 LED.
- Q.3 (a) Draw and explain internal construction of encoder. 03
 - (b) Implement the following function with help of 8x1 Multiplexer. 04 F (A,B,C,D) = $\sum (0,1,3,4,8,9,15)$
 - (c) Compare in detail RTL, DTL, TTL, ECL and CMOS. 07

OR

Q.3 (a) Write the points of difference between combinational and sequential logic. 03

14

	(b) (c)	Draw the circuit diagram of D-type positive edge triggered flip flop Write a note on collector to base bias.	04 07
Q.4	(a) (b)	What is ripple counter? Explain in detail bidirectional shift register with parallel load	03 04
	(c)	Discuss with example approximate analysis of the voltage divider bias. OR	07
Q.4	(a) (b) (b)	Why we require master slave or edge triggered flip flop Design 3- bit up synchronous counter. Write the points of comparison between CB, CE and CC configuration of transistor.	03 04 07
Q.5	(a)	What is energy band diagram?	03

- (b) Explain the different types of clipping circuits
- (c) The fixed bias circuit of Fig. uses a silicon transistor. The component values are $RC = 500 \ \Omega$ and $RB = 100 \ k\Omega$. βdc of the transistor is 100 at 30°C and increases to 120 at a temperature of 80°C. Determine the percent change in the Q point values over this temperature range. Assume that VBE and ICBO remain constant.

OR

Q.5	(a)	Explain the requirement of compliment in digital logic.	03
	(b)	Explain with circuit diagram positive clamper and negative clamper.	04
	(c)	Explain DC load line and Q-point for any transistor configuration. Also state	07
		the necessity of biasing and list biasing methods for transistor	

04