(DCS / DIT 211)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE & IT

Paper - I : Mathematics - III

Time : 3 Hours

1)

Maximum Marks : 75

	Answer question No.1 compulsory	(15)
	Answer ONE question from each unit	(4 × 15 = 60)
a)	Define odd function with examples.	
b)	Define periodic function.	
c)	Write the form of the Euler's formula.	
d)	Define half range cosine series.	
e)	Define Integral transform.	
f)	Evaluate $\Delta^2 \cos 2x$	
g)	Newton's forward interpolation formula.	
h)	Define Numerical integration.	
i)	Define trapezoidal rule.	
j)	Write iterative of Newton's method.	
k)	Write iterative of regula falsi method.	
1)	Write Bessel's formulae.	
m)	Write the formula for unequal spaced values of the arugents of x .	
n)	Evaluate $\Delta \tan^{-1} x$	
0)	Write the formula $\left(\frac{dy}{dx}\right)_{x=x0}$	

<u>UNIT - I</u>

2) a) Find a Fourier series to represent $f(x) = x - x^2$ from $x = -\pi$ to $x = \pi$

b) Find the Fourier series expansion for f(x)

$$f(x) = -x \quad \text{if } -\pi < x < 0$$

= + x if 0 < x < π
Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \dots = \frac{\pi^2}{8}$

OR

- c) Express f(x) = x as a half range cosine series 0 < x < 2
- d) Expand $f(x) = e^{-x}$ as a Fourier series in the interval (-1 1)

<u>UNIT – II</u>

3) a) Find the Fourier transform of
$$f(x) = \frac{1}{1+x^2}$$

b) Find the Fourier sine transform of the function $f(x) = e^{-2x} + 4e^{-3x}$

OR

- c) Find the Fourier sine transform of $f(x) = e^{-ax}$ and deduce the invervision formula.
- d) Show that $f(x) = e^{-x^2/2} \infty < x < \infty$ is self reciprocal.

<u>UNIT – III</u>

4) a) Give the values :

1. <i>x</i>	2. 5	3. 7	4. 11	5. 13	6. 17
7. $f(x)$	8. 150	9. 392	10. 1452	11.2366	12. 5202

Evaluate f(q) using Newton's divided difference formula.

b) Apply Lagrange's interpolation method find the value of x when f(x) = 15 from the given data :

x	5	6	9	11
f(x)	12	13	14	16

- c) Given sin $45^\circ = 0.7071$, sin $50^\circ = 0.7660$, sin $55^\circ = 0.8192$, sin $60^\circ = 0.8660$ find sin 62° using backward interpolation formula.
- d) Find y'(0) and y''(0) from the following table

<u>UNIT - IV</u>

- 5) a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using simpson's $\frac{1}{3}rd$ rule taking $h=\frac{1}{6}$.
 - b) Solve $\frac{dy}{dx} = x + y$, y(1) = 0 numerically up to x = 1.2 with h = 0.1.

OR

c) Apply Runge – kulta method to find an approximate value of y for x = 0.2 in steps of 0.1 if $\frac{dy}{dx} = x + y^2$ given that y = 1 where x = 0 take h = 0.1 and carry out the calculation in two steps.

XXX

(DCS / DIT 212)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE & IT

Paper - II : Basic Electronics

Tin	ne : 3	3 Hours	Maximum Marks : 75
		Answer question No.1 compulsory	(15)
		Answer ONE question from each unit	$(4 \times 15 = 60)$
1)	a)	What are intrinsic and extrinsic semiconductors.	(2)
	b)	Define ripple factor and regulation of a rectifier.	(2)
	c)	Give applications of LED.	(2)
	d)	Define Barkhaussen criteria.	(2)
	e)	Draw op amp as a summer.	(2)
	f)	What is a clipper?	(1)
	g)	What are h-parameters?	(2)
	h)	What is the need of feed back.	(2)

<u>UNIT - I</u>

- 2) a) Draw a self bias circuit and derive an expression for the stability factor.
 - b) Explain the working of a half wave rectifier.

OR

- 3) a) Draw neat figures and explain the function of a clipper.
 - b) Draw input and output characteristics of a BJT in CE configuration and explain.

<u>UNIT - II</u>

- *a)* Explain the working of a Depletion type MOSFET.
 - b) Draw a neat figure and explain the principle of CRT.

OR

- 5) a) Draw the VI characteristics and explain the function of a UJT.
 - b) Explain the principle of operation of LCD.

<u>UNIT - III</u>

- 6) a) Explain the operation of a class C amplifier.
 - b) Draw the input and output waveforms and explain Hartely oscillator operation.

OR

- 7) a) Explain the operation of wein bridge oscillator.
 - b) Explain the class B amplifier operation with neat waveforms.

UNIT - IV

- 8) a) Explain how op amp can be used as an integrator.
 - b) Discuss the features of IC voltage regulator.

OR

- 9) a) Draw a Differentiator using op amps and explain its operation.
 - b) List the ideal characteristics of an op amp.

XXX

(DCS 213)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

Computer Science

Paper - III : DIGITAL LOGIC DESIGN

Time : 3 Hours

1)

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

Maximum Marks : 75

Answer question No. 1 con	<u>ıpulsory</u>	(15 x 1 = 15)
Answer ONE question from	each unit	(4 x 15 = 60)
Draw the truth table of NAND gate.		
Design subtractor circuit.		
Define positive logic of TTL family.		
Define Decoder.		
Define flipflop.		
Draw 4×1 multiplexer.		
Difference between ROM & RAM.		
Define shift register.		
What are universal gates?		
What is sequential circuit?		
What is state table?		

- l) State De Morgan's theorem.
- m) What is combinational logic circuit.

- n) What is BCD Code?
- o) Difference between Asynchronous and Synchronous Circuit.

<u>Unit – I</u>

- 2) a) Convert the following :
 - i) $(3456)_{10}$ to base 2
 - ii) $(12EF)_{16}$ to base 8
 - iii) $(10110011)_2$ to base 16
 - iv) $(726)_8$ to base 10
 - b) Realize AND, OR, NOT, XOR gates using universal gates.

OR

- 3) a) Minimise the function using K-map and obtain minimal Sop function? $f(A, B, C, D) = \pi (1, 2, 3, 4, 6, 9, 10, 12, +14) + d (5, 7, 11)$
 - b) What are universal gates? Why they called so?

<u>Unit – II</u>

- *4)* a) Draw and explain the operation of 4 bit comparator.
 - b) List the applications of multiplexers and demultiplexers.

OR

- 5) a) What is an encoder? Explain octal to binary encoder.
 - b) Design the full adder using two half adders and logic gates.

<u>Unit – III</u>

- 6) Explain the following related to sequential circuit with suitable example.
 - a) State Diagram.
 - b) State Table.
 - c) State assignment.

OR

- 7) a) Distinguish between edge triggering and level triggering give examples.
 - b) Differences between Transition Table and Excitation Table.

<u>Unit – IV</u>

- 8) a) Draw the circuit diagram of 4 bit ring counter using D-flip flops and explain its operation with the help of bit pattern.
 - b) Discuss comparision between PROM, PLA and PAL.

OR

- 9) a) Explain different types of ROM generally used.
 - b) Explain programmable array logic.

жжж

(DCS / DIT 214)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE & IT

Paper - IV : Data Structures

Time : 3 Hours

Maximum Marks : 75

 $(5 \times 3 = 15)$

(15)

(15)

Answer question No. 1 compulsory

Answer ONE question from each unit

1) Write shorts on :

- a) Define polynomial ADT.
- b) What is stack?
- c) What is Binary tree?
- d) What is AVL tree?
- e) Define time complexity of Quick sort.

<u>Unit – I</u>

2) What is circular linked list and explain insertion and deletion operations with suitable example? (15)

OR

3) Explain double linked list operations with examples?

<u>Unit – II</u>

4) What is Queue ADT? Explain its operations?

OR

5) What is infix expression and post fix expression? Convert infix expression to post fix expression? (15)

<u>Unit – III</u>

6) What is Quick sort? Write an algorithm to implement Quick sort and give suitable example? (15)

7)	What is internal sorting? Write a program to implement merge sort with example?	(15)
	<u>Unit – IV</u>	
8)	Explain Binary search tree operations in detail?	(15)
	OR	

9) What is splay tree? Explain operations of splay tree with examples. (15)

жжж

(DCS 215)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE

Paper - V : Object Oriented Programming

Time : 3 Hours

1)

2)

3)

Maximum Marks : 75

	Answer question No. 1 compulsory	(15)
	Answer ONE question from each unit	(4 x 15 = 60)
Wri	ite short notes on :	
a)	Function overloading.	
b)	Virtual Functions.	
c)	Constructor.	
d)	De structor.	
e)	File I/O and Binary I/O.	
	<u>Unit – I</u>	
Exp	plain the features of OOPs?	(15)
	OR	
Exp	olain :	$(5 \times 3 = 15)$
a)	Name space	
b)	Copy constructor	
c)	Default Function Arguments	
d)	Friend functions	
e)	Virtual functions	

<u>Unit – II</u>

4)	a)	Explain the function overloading with examples.	(9)			
	b)	Discuss about operator overloading?	(6)			
		OR				
5)	a)	Explain the different types of inheritances with suitable examples.	(10)			
	b)	Discuss about abstract data types.	(5)			
		<u>Unit – III</u>				
6)	a)	Discuss about Binary I/O.	(8)			
	b)	Explain the C++ stream classes.	(7)			
		OR				
7)	a)	Explain the conversion functions.	(8)			
	b)	Explain difference between C and C++ languages.	(5)			
	c)	Explain briefly the importance of asm keyword.	(2)			
		<u>Unit – IV</u>				
8)	Exp	plain the Exception Handling Mechanism with suitable programs.	(15)			
	OR					
9)	a)	Explain class templates with example.	(10)			
	b)	Explain the costing operators.	(5)			

жжж

(DCS 216)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE

Paper - VI : Environmental Studies

Time : 3 Hours

Maximum Marks : 75

Answer question No.1 compulsory	(15)
Answer ONE question from each unit	$(4 \times 15 = 60)$

1) Answer the following:

- a) Need for public awareness
- b) Desert Ecosystem
- c) Noise pollution
- d) Disaster management
- e) Human Rights

<u>UNIT - I</u>

- 2) Give a short note on:
 - a) Flood and drought as a serious environmental hazard.
 - b) Write about the uses and over exploitation of forest resources.

OR

3) Explain about uses and over exploitation of mineral Resources?

<u>UNIT – II</u>

4) What is food chain and food web? Describe the organisms which typically occupy various levels in ecological pyramid?

OR

5) Explain briefly about Hot-spots of Biodiversity.

<u>UNIT - III</u>

- 6) Write a short notes on:
 - a) Marine pollution.
 - b) Solid waste management.

OR

- 7) a) Explain nuclear accidents and holocaust.
 - b) Wild life protection Act.

<u>UNIT – IV</u>

8) What is mean by population Explosion? Discuss the Indian scenario?

OR

9) Briefly discuss HIV/AIDs, mode of its spread and it effects on environment.

жжж

(DCS 221)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Second Year)

COMPUTER SCIENCE

Paper - I : Mathematics - IV

Time : 3 Hours

1)

j)

Maximum Marks : 75

	Answer question No. 1 compulsory	(15)
	Answer ONE question from each unit	(4 x 15 = 60)
a)	Define derivative of a function $f(z)$	
b)	State Cauchy – Riemann equations.	
c)	Define harmonic function.	
d)	Define zero's of a function.	
e)	Define Removable singularity.	
f)	Define Poisson's integral formula.	
g)	Define entire function.	
h)	Define conjugate of a function.	
i)	Define Residue theorem.	
j)	Define pole.	
k)	Define frobenius method.	
1)	Define Rodaigue's formula.	

Define Bessel's equation. m)

- n) Write the expression for $p_3(x)$.
- o) Write the orthogonal property of Legendre polynomial.

<u>Unit – I</u>

- 2) a) Show that the function $f(z) = \sqrt{|1xy|}$ is not analytic at the origin even through CR equations are satisfied.
 - b) Find the orthogonal trajectories of the family of curves $x^4 + y^4 6x^2y^2 = C$.

OR

- 3) a) Show that f(z) = xy + iy is everywhere continuous but not analytic.
 - b) State and prove Riemann equation for polar coordinates.

<u>Unit – II</u>

4) a) Expand Taylor's series of
$$\frac{z-1}{z+1}$$
 about the point $z = 1$.

b) Compute
$$\iint \frac{z+4}{z^2+2z+5} dz$$
 where c is $|z+1-i| = 2$.

OR

5) a) State and prove Taylor's series.

b) Find the Laurent series of
$$f(z) = \frac{1}{z^2(z-3)^2}$$
 about $z = 3$.

<u>Unit – III</u>

6) a) Evaluate
$$\int_{c} \frac{e^{z}}{\cos \pi z} dz$$
 where c is the unit circle $|z| = 1$.

b) Show that
$$\int_{0}^{2\pi} \frac{\cos^2 \theta}{1 - 2a\cos\theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2} a^2 < 1$$
OR

7) a) Find the residue of
$$f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$$
 at its poles and hence evaluate
$$\iint_{c} f(z) dz$$
 where c is the circle $|z| = 2.5$.

b) Solve the series in equation
$$y'' + xy' + y = 0$$
.

<u>Unit – IV</u>

8) a)
$$J_n''(x) = \frac{1}{4} J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$$

b) Show that $J_0(x) = \frac{1}{\Pi} \int_0^{\pi} \cos(x \cos \phi) d\phi$

OR

9) a) Express
$$f(x) = x^4 + 3x^3 - x^2 + 5x - 2$$
 in terms of Legendre polynomials.

b) Prove that
$$np_n(x) = xp'_n(x) - p'_{n-1}(x)$$

жжж

(DCS 222)

B.Tech. DEGREE EXAMINATION, MAY - 2015

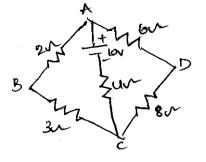
(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - II : Circuit Theory

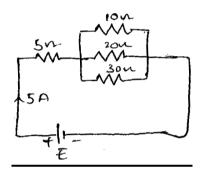
Time : 3 Hours

Maximum Marks: 75

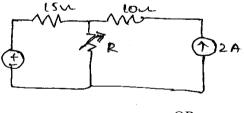

Answer question No.1 compulsory	(15)
Answer ONE question from each unit	$(4 \times 15 = 60)$

- *1)* a) Write about KVL.
 - b) When 'n' capacitors are connected :
 - i) What is the effective resistance in series combination.
 - ii) What is the effective resistance in parallel combination.
 - c) State Thevinis theorem and Norton's theorem.
 - d) Define peak factor, crest factor, form factor.
 - e) Give the differences between series and parallel resonance.
 - f) Define quality factor and give relation between quality factor and bandwidth.
 - g) What are the advantages of three phase system.
 - h) What is a balanced system.
 - i) What is meant by source transformation technique.
 - j) Give the expression for energy stored in capacitor & inductor.

<u>UNIT - I</u>


2) a) Write about Mesh analysis.

b) Calculate current in each element of the circuit.



- *3)* a) Write about Nodal analysis.
 - b) In the circuit shown in figure the current is 5 Ω resistor is 5 amp. Calculate power consumed by 5 Ω resistor. Also determine current through 10 Ω resistor and the supply voltage E.

<u>UNIT - II</u>

- 4) a) Define maximum power transfer theorem.
 - b) Find value of R for maximum power transfer. Also calculate the maximum power.

OR

5) Derive the expression for response when RC series circuit is excited by a AC source.

UNIT - III

- 6) a) For a π connected resistive network, compute short circuit z -parameters.
 - b) A series RLC circuit consists of $R = 50 \Omega$, $L = 20 \mu$ H and $C = 10 \mu$ F. The applied voltage is 100V. Find (i) W_o (ii) Q_o (iii) Bandwidth

OR

7) Derive the expression for resonant frequency and quality factor for series resonance.

<u>UNIT - IV</u>

- 8) a) What is polyphase system and write its advantages.
 - b) For a star connected network, derive the relationship b/w line and phase values with the help of phasor diagram.

OR

- 9) a) Describe about generation of $3-\phi$ voltages.
 - b) Determine the active and reactive components of voltages in each phase of star connected 4400V, 3-phase s/m supplying 3500 kW at a power factor 0.65.

$\mathbf{H}\mathbf{H}\mathbf{H}$

(DCS 223)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - III : Computer Organization

Time : 3 Hours

Maximum Marks : 75

Answer question No.1 compulsory	$(5 \times 3 = 15)$	
Answer ONE question from each unit	$(4 \times 15 = 60)$	

1) Write a short note on :

- a) BUS & Memory Transfer.
- b) Control Memory.
- c) Main Memory.
- d) Addition and Subtraction in signed Magnitude.
- e) DMA (Direct Memory Access)

<u>UNIT - I</u>

2) Explain about Instruction codes and computer registers.

OR

3) List and Explain various Arithmetic Microoperations.

<u>UNIT - II</u>

4) Explain different types of addressing modes with an example.

OR

5) Design of control unit. Explain in detail.

<u>UNIT - III</u>

6) Explain about Booth's Algorithm, with Flowchart.

OR

- 7) a) What is virtual Memory? Explain its features.
 - b) Explain the concept of ROM.

<u>UNIT - IV</u>

8) Differentiate : Isolated I/O and Memory Mapped I/O.

OR

9) Explain in detail about IOP.

**

(DCS 224)

B. Tech DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - IV : Discrete Mathematical Structures

Time : 3 Hours

Maximum Marks : 75

Answer question No.1 is compulsory	(15)
Answer ONE question from each unit	$(4 \times 15 = 60)$

- *1)* Write short notes on :
 - a) Properties of Relations.
 - b) Write converse inverse & contrapositive of the statement "∆ ABC is equilateral then it is isosceles".
 - c) Define Recurrence Relation.
 - d) Define Permutation with example.
 - e) Draw a Hasse diagram for the poset (A, 1), where A = {2, 3, 6, 12, 24, 36} and 'I' de notes the divisibility relation.

<u>UNIT - I</u>

- 2) a) Construct a truth table for the following statement: $\sim P \leftrightarrow \sim Q \leftrightarrow Q \rightarrow R$. (7)
 - b) Show that the following statements are logically equivalent : $P \rightarrow Q \land P \rightarrow R \iff P \rightarrow (Q \land R)$ (8)

OR

3) a) Show that $P \to Q \to R$, $Q \to R \to S \Rightarrow P \to Q \to S$. (7)

b) Prove that
$$A - B \cap C = A - B \cup A - C$$
. (8)

<u>UNIT - II</u>

- 4) a) State the Binomial theorem.(5)
 - b) Show that the number of r-permutations of a set of n distinct elements is given by $P(n,r) = \frac{n!}{n-r!}.$ (10)

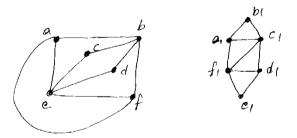
OR

- 5) a) Find the number of positive integers less than or equal to 2076 and divisible by 3 or 4.
 - b) Find the coefficient of $x^4 x^7$ in the expansion of $(x-y)^{11}$. (8)

(7)

(8)

<u>UNIT - III</u>


- 6) a) Solve the recurrence relation an $-7 a_{n-1} + 12 a_{n-2} = 0$ for $n \ge 2$, $a_0 = 1 \& a_1 = 2$. (8)
 - b) Solve the recurrence relation of Fibonacci series.

OR

- 7) a) Solve the recurrence relation $u_{n+2} + 4 u_{n+1} + 3 u_n = 5 (-2)^n$, $u_0 = 1$, $u_1 = 0$. Using generating function. (8)
 - b) Solve $an = a_{n-1} + n$ where $a_0 = 2$ by substitution. (7)

UNIT - IV

8) a) Verify the following graphs are isomorphic or not? (7)

- b) Find the chromatic number of the following graphs : (8) i) Complete Graph (K_n) ii) Complete Bi-partite graph $(K_{m,n})$ iii) Cycle graph (C_n) OR
- *9)* a) State and prove five color theorem.
 - b) Give the adjacency matrix and graph representation of the relation. (7)
 R = {(a, a), (a, c), (b, a), (b, b), (b, d), (c, b) (c, c), (c, d), (d, a), (d, b), (d, d)} on set A = {a, b, c, d}.

**

(DCS 225)

B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - V : File Structures

Time : 3 Hours

Maximum Marks: 75

Answer Question No.1	<u>compulsory</u>	(15)

Answer any ONE question from each unit $(4 \times 15 = 60)$

- 1) a) Define separate chaining.
 - b) What is Acyclic graph?
 - c) Describe how to find strong components?
 - d) Define Euler circuit.
 - e) What do you mean by File Structure.

<u>UNIT – I</u>

2) a) Explain hashing, Rehashing and extendible hashing.

OR

- b) Explain the following :
 - i) Open addressing
 - ii) Topological sort

<u>UNIT - II</u>

3) a) Explain Kruskal's algorithm in detail.

OR

b) Explain about DFS and its applications.

<u>UNIT - III</u>

4) a) Describe the methods used for organizing records of a file.

OR

b) Explain file processing operations with example.

<u>UNIT - IV</u>

5) a) Explain in detail about the sorting of large files.

OR

b) Explain about indexing with large files.

**

(DCS 226)

B.Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

COMPUTER SCIENCE

Paper - VI : Microprocessors

Time : 3 Hours

Maximum Marks: 75

Answer question No.1 compulsory	(15)

<u>Answer ONE question from each unit</u> $(4 \times 15 = 60)$

- *1)* a) Define procedures?
 - b) Write different types of flags?
 - c) Define DMA.
 - d) Define Interrupts?
 - e) What is Macros?
 - f) Explain about while Do implementation.
 - g) Define Assembler?
 - h) What is debugging.

<u>UNIT – I</u>

- 2) a) Draw the architecture of 8086 micro processor and explain about each block.
 - b) Write an ALP to divide a 16 bit number with a 8 bit number and store the result in memory.

OR

- 3) a) Write an ALP to convert packed BCD to ASCII.
 - b) Write an ALP to perform addition of two 16 bit numbers.

<u>UNIT - II</u>

- *4)* a) Write the differences between procedures and macros and explain them with suitable examples.
 - b) Explain if -then else statement with suitable examples.

OR

- 5) a) What are the logical instructions and explain them with examples.
 - b) What are the Assembler directives.

<u>UNIT - III</u>

- 6) a) Explain about addressing a Memory and ports in Micro computer system.
 - b) Explain 8086 hardware review.

OR

- 7) a) Define Interrupt vector Table? Draw and explain interrupt vector table.
 - b) Explain Hardware interrupt applications.

<u>UNIT - IV</u>

- *8)* a) Explain the DMA transfer.
 - b) Explain 8086 maximum mode of operation.

OR

- *9)* a) Explain Interfacing of Dynamic RAM.
 - b) Write short note on 80186 Processor.

**