187/2015

The standard dimension of brick as per Indian standard is:

	(A)	20×10×10 cm		Section of the sectio	(B)	22.5	×11.5×8 cm		
	1.	19×9×9 cm			(D)	18×9	9.5×9.5 cm		
2.	The a	aggregate is fine i	f it is	completely i	retaine	ed on	;		*
	(A)	0.15 mm sieve	(B)	0.30 mm si	eve	(C)	4.75 mm sieve	(D)	1.18 mm sieve
3.	One	arc is :							2
	(A)	1 m ²	(B)	100 m ²		(C)	1000 m ²	(D)	10 m ²
4.	The	WCB of a line O	A is 13	32° its quadr	antal	beari	ng is :		
		S 48°E	(B)				N 312°W	(D)	E 48°S
_	Char	cy's formula is gi	ven a	s ·					
5.				v = c√mi		(C)	$v=m\sqrt{ci}$	(D)	$v=mc\sqrt{i}$
6.		algebraic sum o	f the	moments tal	ken ab	out a	any point in the	plane	of forces is zero is
	(A)	Law of polygon	n of fo	orces	(B)	Lan	us theorem		
	(C)	Newton's law	of for	ce	(D)	Law	rs of moments		
7.	The	resultant hydros	tatic 1	force acts the	rough	a poi	ints is known as	:	
	(A)				(B)		tre of buoyancy		
	(C)	centre of press	ure		(D)	cen	troid		
8.	The	ecentre of gravity	of q	uadrant of ci	ircle is	at a	distance of :		
		$\frac{3r}{4\pi}$ from the a				100	from the axis		
	(C)	$\frac{3r}{8\pi}$ from the a	xis		(D)	8r 3π	from the axis		

9.	If the Poisson's ratio of a material is 0.25, the ratio of modulus of rigidity to the Young's modulus is :											
	(A)	2	(B)	4		(C)	2.5	(D)	0.4			
10.	The	point of contra	flexture	e is the poin	t whe	re:						
	(A)	Shear force is	zero		(B)	The	bending mon	nent is ze	ro			
	(C)	Beam is supp	orted		(D)	The	bending char	nges its si	gn			
11.	Any	trap should ha	ive:									
	(A)	water seal	(B)	sullage		(C)	a bend	(D)	grating			
12.	Eco	system is :										
	(A)	habitat			(B)	com	munity and e	nvironm	ent			
	(C)	community			(D)		phere and ha					
13.	The	outer signal is	provide	d at a minir	mum c	listan	ce of :					
	(A)	1 km from ho	me sign	al	(B)	580	m from home	signal				
	(C)	860 m from h	ome sig	mal	(D)	180	m from home	signal				
14.	A th	nin cylinder of sure of 10 N/m	diamete m². Th	er 100 mm e hoop stre	and the	hickne	ess 5 mm is s	subjected	to a internal fluid			
	(A)	150 N/mm ²	(B)	10 N/mm	n ²	(C)	15 N/mm ²	(D)	100 N/mm ²			
15.		theodolite trave 'n' number of s		e angular er	ror sho	ould n	ot exceed usin	ng a 20" lea	ast count theodolite			
	(A)	20"√n	(B)	20" × n ²		(C)	$20" \times \sqrt{n^2}$	(D)	20" × 2n			
16.	A ho	orizontal force 4 e body is just in	0 kgf is the po	applied on int of motio	a bod	y of w	reight 120 kg p of friction be	placed in	a horizontal plane.			
	(A)	20°	(B)	18°26'		(C)	10°	(D)	25°			
17.	An e	equation for a d	eficient	frame :								
	224	p = 2i + 3	(B)	n = 2i = 2		(0)	n-112	(TN)	: 2			

18.	The	process of apply	ring ce	ment mortar und	er pre	ssure through a	nozzle	is called :
	(A)	Pressurising	(B)	Prestressing	(C)	Guniting	(D)	Compressing
19.	A ex	cample of endog	enous	tree is :				
	(A)	bamboo	(B)	teak	(C)	deodar	(D)	oak
20.	The	purpose of soun	dness	list is to determin	e :			
	(A)	the presence of	f free li	ime (B)	setti	ng time		
	(C)	sound proof qu	uality o	of cement (D)	the i	fineness		
21.		maximum perm al to :	iissible	excentricity of lo	ad on	a rectangular fo	undati	on with width B is
	(A)	$\frac{B}{3}$	(B)	$\frac{\mathrm{B}}{\mathrm{6}}$	(C)	$\frac{B}{2}$	(D)	$\frac{\mathrm{B}}{4}$
22.	The	portion of the b	rick ob	tained by cutting	into t	wo portion long	itudina	lly is called:
	(A)	bat	(B)	king closer	(C)	queen closer	(D)	bevelled closer
23.	The	inner curve of a	n arch	is:				
	(A)	spandril	(B)	extradose	(C)	soffit	(D)	arcade
24.	Lift	become essentia	l in a b	ouilding when the	numl	per of floors exce	eds:	
	(A)	2	(B)	3	(C)	4	(D)	6
25.		moment of iner even by :	tia of a	rectangular secti	on hav	ring b - width ar	nd d - c	lepth about x - axis
	(A)	bd ³ 12	(B)	$\frac{b^3d}{12}$	(C)	$\frac{b^2d^2}{6}$	(D)	$\frac{bd^3}{6}$
26.	The	ratio of volume	of voic	ds to the total volu	ume of	f given soil is :		
	(A)	voids ratio	(B)	porosity	(C)	air volume	(D)	air area
								400/00/0

27.		ull of 20 t is sudde ne rod is equal to		plied to a ro	d of c	ross -	sectional area	40 cm².	The stress produ	cec
	(A)	0.5 t/cm ²	(B)	1.0 t/cm ²		(C)	2.0 t/cm ²	(D)	4 t/cm ²	
28.	In a	fixed beam, the s	lopes	at the ends	are :					
	(A)	minimum			(B)	max	imum			
	(C)	same as at cent	re		(D)	zero				
29.	A de	esirable pH value	for w	rater is :	ol.					
	(A)	7	(B)	6 to 8		(C)	5 to 9	(D)	7 to 8.5	
30.	The	magnetic bearing	g of a	line AB is 2	212°3()' and	the declination	on 2°15'	east. What is to	rue
	(A)	210°15'							132°30'	
31.	The prop	process of proper portion is known	r and	accurate me	asure	ment	of concrete in	gredient	s for uniformity	of
	(A)	batching	(B)	grading		(C)	mixing	(D)	blending	
32.	The recta	distance to the r ngular beam is :	neutra	al axis from	the	top co	ompression fi	bre of a	singly reinforc	ed
	(A)	$x_{\rm u} = \frac{0.36 \text{ fck b}}{0.87 \text{ fy Asi}}$	or el	er ender in men salam	(B)	<i>x</i> _u =	0.3 fy b 0.87 fck Ast			
		$x_{\rm u} = \frac{0.87 \text{fy Ast}}{0.36 \text{fck b}}$					0.87 fck b 0.36 fy Ast			
33.	The b	pearing stiffeners	in pla	te girders ar	e pro	vided	at:			
	(A)	mid span	(B)	quarter poi	nts	(C)	supports			
34.	The r	nost economical s	ection	n for a colum	nn is :	3.1				
	40000						channel			

35.	Bear	ring of OA = 20°	30' and	bearing of	OB=	120°00), ∠AOB is	:		
	(A)	99°30'	(B)	100°30'		(C)	140°30'		(D)	280°00'
36.	The	value of dismar	ntled m	aterial less	the cos	st of d	ismantling	is calle	d:	
	(A)	Scrap value	(B)	Salvage v	alue	(C)	Book valu	ie	(D)	Marhit value
37.	Back	washing is hig	hly effe	ective in cas	se of :					
	(A)	Slow sand filte	ers		(B)	Rapi	d sand filte	ers		
	(C)	Pressure filters	3		(D)	Rapi	d and slow	sand f	ilters	
38.	Colo	our of fresh sewa	age :							
	(A)	brown	(B)	gray		(C)	pink		(D)	black
39.		I' is the weight jined by the retai				400			-	le of repose of soil
	(A)	$\frac{P}{W}\left(\frac{1-\sin\phi}{1+\sin\phi}\right)$	2)2		(B)	$\frac{P}{W}$	$\frac{1+\sin\phi}{1-\sin\phi}$)2		
	(C)	$\frac{P}{W} \left(\frac{1 - \sin \phi}{1 + \sin \phi} \right)$)		(D)	$\frac{P}{W}$	$\frac{1+\sin\phi}{1+\sin\phi}$			
		The second	_					ricen =		
40.	The	bending momer	nt in a l	eam will b	e max	imum	where :			
		the shear force						is maxi	mum	
	(C)	the shear force			(D)		hear force			
41.		eel wire of 5 mm 200 GPa. The m						5 m rac	lius.	Young's modulus
	(A)	100 N/mm ²	(B)	1000 N/n	nm ²	(C)	10 N/mm	2	(D)	1 N/mm ²
				or Source			7 J. W. H.			100
42.	A ur	nit is working in	anaero	bic action	is:					
	(A)	Activated slud			(B)	Tricl	ing filter			
	(C)	Contact bed			(D)		ic tank			

43.	The	primary function	of ste	eper is :						
	(A)	to maintain gua	ige		(B)	to ta	ke loads fro	om rails		
	(C)	to give cushioni	ing ac	tion	(D)	to gi	ve stability	of the tra	in	
44.	ABC	D is a square. The	he bea	nring of AB i	s 50°.	The	bearing of	DC is:		
	(A)	140°	(B)	190°		(C)	50°	(D) 290°	
45.	The	sum of interior ar	ngles	of a closed to	ravers	se is :				
	(A)	(2n-4)90	(B)	(2n+4)90		(C)	(2n-4)18	80 (D	(2n+4)	180
46.	Curi	ent meter is used	for n	neasuring:						
	(A)	Velocity	(B)	Viscosity		(C)	Current	(D) Pressur	e
47.	The	quantity of cemer	nt req	uired for the	ratio	of 1 :	5 in cemer	nt mortar	is:	
	(A)	288 kg		240 kg		(C)	178 kg	graf (D) 206 kg	
										(3)
48.		problem the alge- cal force (ΣV) is 3							algebraic s	
	(A)	48.5 N	(B)	35.8 N			38.5 N	(D) 40 N	
49.	The	process of adding	g wate	r to lime an			into hydra			
	(A)	watering	(B)	baking		(C)	hydration	(D) slaking	
50.	Fran	cis turbine is :								
	(A)	impulse turbine			(B)	radia	al flow imp	ulse turbii	ne	
	(C)	axial flow turbing	ne		(D)	react	ion radial	flow turbi	ne	
51.	A cu	rve consists of tw	o arc	s of equal or	diffe	rent ra	adii bendin	g in oppo	site directio	on is:
	(A)	Simple curve			(B)	Com	pound cur	ve		
							mark at			

52.	The las:	latitude and departure of any po	oint w		
	(A)	Independent co-ordinate	(B)	Consecutive co-ordin	aate
	(C)	Total latitude	(D)	Total departure	
53.	Bern	oullis theorem deals with the law	of cor	nservation of:	
	(A)	mass (B) momentu	ım	(C) energy	(D) velocity
54.	For a	a simply supported beam, the max	ximum	deflection permitted i	s:
	(A)	$\frac{1}{300}$ of the span	(B)	$\frac{1}{325}$ of the span	
	(C)	$\frac{1}{350}$ of the span	(D)	$\frac{1}{400}$ of the span	
55.	In a	cantilever retaining wall for heigh ance of :	nt 'H',	the horizontal pressure	e of the earth will act at a
	(A)	H/3 from the top	(B)	H/3 from the base	
	(C)	H/2 from the top	(D)	H/4 from the base	
56.	Core	e-cutter method is used for :			
	(A)	determining density of soil		* 8 m m/d	
	(B)	obtaining samples for direct she	ear test	:	
	(C)	determining bearing capacity of	f soil		
	(D)	compacting soil			
57.	The	indentation provided in a face of	the b	rick is called :	
	(A)	Plank (B) Pallet		(C) Striker	(D) Frog
58.	In l	imit state method of design, the o	ver rei	inforced sections:	
	(A)	are not permitted			
	(B)	are permitted			
	(C)	are permitted only in extreme i	fibres		
	(D)	permitted in any case			

	(A)	$\frac{\pi}{16}$ D ³	(B)	$\frac{\pi}{16}$ D ⁴		(C)	$\frac{\pi}{32}$ D ³	(D)	$\frac{\pi}{32}$ D ⁴	
60.	A c 190	hain 20 m long m. The true ler	is 20 c	m too she	ort w	as use	d to measur	e a line ar	nd the res	ult wa
	(A)	188.1 m	(B)	191.5 m		(C)	193 m	(D)	190 m	
61.	Con	nbined correction	n for ref	raction an	d cur	vature	of 1 km is:			
	(A)		(B)	0.0673 m			0.0785 m	(D)	0.0673 km	1
62.	A 15	cm theodolite	means :							
	(A)	length of the to	elescope	is 15 cm	(B)	heigh	nt of standard	ds is 15 cm		
	(C)	diameter of lov	100				s of upper p			
		- viat (d) -					12.7			
63.	CPM	1 stands for :								
	(A)	Computer Pro	grammii	ng Mode	(B)	Critic	cal Project M	anagemen		
	(C)	Critical Path M	lethod		(D)	Cont	rolling, Plani	ning and N	laintenanc	e
64.		approximate we		m ³ of mil	d stee	el is :				
	(A)	1000 kg	(B)	240 kg		(C)	14000 kg	(D)	7850 kg	
65.	Ina	closed travers th		o (mark)			100			
00.	(A)	closed travers th		aic sum or 360°	aette	4.000	_			
	()		(D)	300		(C)	$(2n+4)\times 9$	(D)	(n-2)180	
66.	For a	level section .	area of	a trapezo	idal	cut wh	en base wid	lth 'B', sic	le slope 'S	s' and
	(A)	Bd+Sd ²	(B)	Bd ² +Sd		(C)	Bd-Sd ²	(D) I	3d ² -Sd	
67.	In a r	iveted joint, who	en the n	umber of 1	rivets	decrea	ses from the	innermost	to the oute	rmost
		Chain			(B)	Zig-Za	ag riveted			
	(C)	Diamond rivete	d		(D)	Disal =	riveted			
107 (2045				201000	O	oo no salenta			
187/	2015				10					A

59. Polar moment of inertia of a solid shaft of diameter D is :

68.	The	best type of balla	st is:						
	(A)	granite	(B)	sandstone	(C)	limestone	(D)	quartzite	
69.	A sn	nall reflecting ins	trume	nt is used to fixir	ng up i	ntermediate poi	nts on	the line is called	:
	(A)	Line ranger	(B)	Ranging road	(C)	Open cross star	ff (D)	Offset rod	
70.	Hyd	raulic ram is a p	ump v	which works:				16 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	(A)	on the principle	of w	ater hammer					
	(B)	on the principle							
	(C)	principle of rec					ŧā		
	(D)	direct action					ymati	oseb ya T. 7	
71.		en a water table is id to be :	withi	n the root zone d	epth a	nd is determined	l to the	plant life, the la	nd
	(A)	basin flooding	(B)	water logged	(C)	over nourished	l (D)	super saturate	d
72.	The	best pipe for wat	er ma	ins for long life is	3:			terrana / Cil	
	(A)	steel	(B)	cement concret	te (C)	cast iron	(D)	asbestos cemer	nt
73.	The	best system of a	railwa	y highway cross	ing is :	edu fim the trigi		The appropri	19
	(A)	level crossing		(B)	road	l over rail track		\$ (40) (A)	
	(C)	road under rail	track	(D)	both	road over and	under l	oridges	
74.	The	process of taking	g out s	tones from natur	al rock	c is:			
	(A)	dressing	(B)			quarrying	(D)	pitching	
75.		ne higher values a			osed co	ontours on a plan	ne indi	cate a ;	
		hill	(B)	depression		valley		ridge	
76.	The	surface of a still		s an example of :					
	(A)			(B)		um surface			
	(C)	Level surface		(D)	Hor	rizontal plane	195K1		

187/2015 {P.T.O.}

77.	Two	o forces P and	Q are ac	ting at an a	ngle θ	, their	r resultant R is	given by	r:	
	(A)	$R = \sqrt{P^2 + }$	$Q^2 + 2PC$	Qsinθ	(B)	R=	$= \sqrt{P^2 + Q^2 + Q^2}$	2PQ cosθ		
	(C)	$R = \sqrt{P^2 - }$	$Q^2 + 2P($	Q cosθ	(D)	R =	$= \sqrt{P^2 + Q^2} -$	2PQ cos2	θ	
78.	Tho	road constant	in a distant							
70.		road connect		rt neadquai						
	(A)				(B)		ional highway			
	(C)	District maj	or roads		(D)	Mir	nor district roa	ds		
79.	Pile	foundations a	are norma	lly used :						
	(A)	in soft claye	y soils							
	(B)	in heavy loa	d situatio	ons						
	(C)	when the be	earing are	a required	is not	availa	able			
	(D)	in loose sand	dy soil							
30.	1S E	I'. The maxin	num defle	ection at the	arries a	e is :	t load 'w' at its		in the second	beam
	(A)	wl ² 16EI	(B)	16EI		(C)	wl ² 48EI	(D)	wl ³ 48EI	
1.	The	Headquarters	of FIFA	is located a	at					
		New York				(C)	Zurich	(D)	London	
2.	Con	aru Hampi's i	name is a	ssociated v	vith					
				Badminto			Snooker	(D)	Tennis	
3.	The	Chief Ministe	r of Mah	arashtra is						
		Ashok Chav			(B)		nmukh			
	(C)	Devendra Fa			(D)		n Pawar			
	reni	oth o								
4.		8 th G - 20 Sur								
	(A)	New Delhi	(B)	Moscow		(C)	Geneva	(D)	Sri Lanka	

12

187/2015

85.	Con	iversations with i	ny me	was writte	en by	-			
	(A)	Man Mohan Sir	ngh		(B)	R.K.	Narayan		
	(C)	P.V. Narasimha	Rao		(D)	Nels	on Mandela		
86.	Poyi	kayil Yohanan's	name	is associated	d with	n			
	(A)	PRDS			(B)	SYD	D		
	(C)	Yogakshema Sa	bha		(D)	SND	Р		
87.	The	East flowing rive	rs of I	Kerala are th	ne trib	utarie	es of River		
	(A)	Periyar	(B)	Bharathap	uzha	(C)	Pampa	(D)	Kaveri
88.	The	leader of 'Malay	alee N	lemorial' wa	as				
	(A)	Dr. Palpu	(B)	G.P. Pillai		(C)	N. Raman Pillai	(D)	R. Ranga Rao
89.	Who	among the follo	wing	founded the	orga	nizati	on 'Samathwa S	amaja	m′ ?
100	(A)	Vaikunda Swar	nikal		(B)	Man	nathu Padmana	bhan	
	(C)	Sree Narayana	Guru		(D)	Kun	naranashan		
90.	Yog	akshema Prastha	nam s	tarted in the	e year	r	·		
	(A)	1906	(B)	1908		(C)	1912	(D)	1914
91.	Lucl	know city is situa	ited or	n the banks	of the	river	·		
	(A)	Gomati	(B)	Yamuna		(C)	Ganga	(D)	Padma
92.	Whi	ch district in Ker	ala ha	s the largest	fores	t area	?		
	(A)	Wayanadu	(B)	Iduki		(C)	Malappuram	(D)	Kasarkodu
93.	The	first concrete da	m in I	ndia is					
	(A)	Bhakranangal	(B)	Hirakud		(C)	Mattupetti	(D)	Malambuzha
94.	Whi	ich temple is kno	wn as	'Dakshina k	(ashi'	?			
	(A)	Guruvayoor			(B)	Saba	arimala		
	(C)	Vaikom Siva Te	emple		(D)	Pana	achikadu Temple	2	

95. Who among the following is known as 'The Father of Indian Renaissance'?									
	(A)	Bankim Chandr	a Chater	jee	(B)	Ram	Mohan Roy		
	(C)	Debendranath T	agore		(D)	Gop	alkrishna Gokhal	e	
96.	SND	P was formed in	the year						
	(A)	1901	(B) 19	03		(C)	1905	(D)	1908
97.	Who	among the follow	wing was	the first	Presi	dent (of All India Trade	e Unic	on Congress ?
	(A)	Tilak	(B) Go	okhale		(C)	Lala Lajpath Ra	i (D)	S.N. Banerjee
98.	Com	munist Party of I	ndia was	formed	in th	e year	r		
	(A)	1920	(B) 19	23		(C)	1925	(D)	1927
99.	'Kev	ala Devu Nationa	al Park' is	s situated	d at _				
	(A)	Rajasthan			(B)	Utta	rakhand		
	(C)	Punjab			(D)	Him	achal Pradesh		
100.	Gur	ıvayoor Sathyagr	aha was	in the ye	ear _				
	(A)	1923	(B) 19	24		(C)	1925	(D)	1931

187/2015

- o 0 o -