*Contd.....*2

Third Year B.Sc., Degree Examinations September / October 2015

(Directorate of Distance Education)

Paper -III: DSC 230: MATHEMATICS Time: 3hrs.] [Max. Marks: 90 *Note: Answer any SIX of the following:* PART - A 1. a) i) Define normal subgroup with an example. ii) Find the quotient group of $G = \{1, -1, i, -i\}$ by the subgroup $H = \{1, -1\}$ under multiplication. (2 + 2)b) Prove that a subgroup N of a group G is normal subgroup of G if and only if every right coset of N in G is a left coset of N in G. (5) c) State and prove the fundamental theorem on homomorphism of groups. (6) 2. a) i) Define an integral domain with an example. ii) Show that the unity element of a sub ring S of a ring R with unit element may be different from the unity of R. (2 + 2)b) Show that the only ideals of a field F are $\{0\}$ and F. (5) c) Find all the principal ideals of the ring $(Z_8, +_8, X_8)$ (6) 3. a) i) Show that $3+\sqrt{5}$ and $1-\sqrt{5}$ are associates in $Z[\sqrt{5}]$. ii) Factorize $x^4 + 4$ into linear factors over Z_5 . (2 + 2)b) Find the gcd of $x^4 + x^3 + 4x^2 + 4x - 2$ and $x^3 + x^2 + 5x - 2$ in Z_7 . (5) c) If $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ be a polynomial with integral co-efficients, then prove that any rational root of p(x) = 0 must have the form $\frac{r}{s}$, where $\frac{r}{a_n}$ and $\frac{s}{a_0}$. (6) 4. a) i) Prove that every subgroup of an abelian group is normal subgroup. ii) Is Z_5 is a field? Why? (2 + 2) **QP CODE 50823** Page No... 2

b) If $f: R \to R^+$ is defined by $f(x) = e^x$, then prove that f is an isomorphism. Find its kernel, where R is the additive group of real numbers and R^+ is the multiplicative group of positive real numbers. (5)

c) If $f: R \to R^1$ be a homomorphism of rings R on to R^1 with kernel K, then prove that f is one-one if and only if $K = \{0\}$.

PART - B

- 5. a) i) In a vector space V, over the field F, If $C_1 \alpha = C_2 \alpha$ and $\alpha \neq 0$ then show that $C_1 = C_2$
 - ii) Give an example to show that the union of two subspaces of a vector space V need not be a subspace of V. (2 + 2)
 - b) In the vector space $V_3(R)$, let $\alpha = (1, 2, 1)$, $\beta = (3, 1, 5)$ and $\gamma = (-1, 3, -3)$. Show that the subspace spanned by (α, β) and (α, β, γ) are the same. (5)
 - c) If *n* vectors span a vector space V(F) and *r* vectors of *v* are linearly independent, then prove that $n \ge r$.
- 6. a) i) Determine whether the vectors (1,0,1), (0,2,2), (3,7,1) of $V_3(R)$ linearly dependent or linearly independent.
 - ii) In an 'n' dimensional vector space V(F) any n + 1 elements of V are linearly dependent. (2 + 2)
 - b) Prove that any two bases of a finite dimensional vector space V have the same finite number of elements. (5)
 - c) Find the basis and dimension of the subspace spanned by the vectors (2, 4, 2), (1, -1, 0), (1, 2, 1) and (0, 3, 1) in $V_3(R)$. (6)
- 7. a) i) If $T:V_1(R) \to V_3(R)$ is defined by $T(x) = (x, x^2, x^3)$ verify T is linear or not.
 - ii) Find the matrix of the linear transformation $T:V_3(R) \to V_2(R)$ defined by T(x, y, z) = (x + y, y + z) relative to bases $B_1 = \{(1,1,1), (1, 0, 0), (1, 1, 0)\} \text{ of } V_3(R)$ $B_2 = \{e_1, e_2\} \text{ of } V_2(R). \text{ (standard basis of } V_2(R)$
 - b) Find the range, null space, rank and nullity of the linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x, y, z) = (y x, y z) and also verify rank-nullity theorem. (5)
 - c) Find the orthonormal basis for a subspace of a Euclidian space (2, 0, 0, 0), (1, 3, 3, 0), (0, 4, 6, 1) (6)

Contd......3

8. a) i) If $f(x, y) = x^y + y^x$ then find f_x and f_y .

ii) If
$$u = \phi(y + ax) + \psi(y - ax)$$
 then show that $\frac{\partial^2 u}{\partial x^2} = a^2 \cdot \frac{\partial^2 u}{\partial y^2}$ (2 + 2)

b) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 where $x \neq y$, then prove that $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial x} = \sin 2u$ (5)

c) Investigate the maximum and minimum of the function $f(x, y) = 2x^2 - xy + y^2 + 7x$ (6)

* * * * * * *