Third Year B.Sc., Degree Examinations September / October 2015

(Directorate of Distance Education)

Paper -V: DSC 232: MATHEMATICS

Time: 3hrs.]

[Max. Marks: 90

Note: Answer any SIX of the following:

PART – A

1. a) i) Find the real and imaginary parts of e^{z} .

ii) Evaluate
$$\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$$
 (2+2)

b) Show that
$$\left|\frac{z-2}{z+2}\right| = 3$$
 represents a circle. Find its centre and radius. (5)

c) Find the equation of the circle passing through the points 1-i, 2i, 1+i. (6)

- 2. a) i) Verify C R equations for the function $f(z) = \cos z$.
 - ii) Show that $u = \sinh x \cos y$ is harmonic (2+2)
 - b) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$. (5)

c) If
$$f(z) = u + iV$$
 is analytic then show that $\left[\frac{\partial |f(z)|}{\partial x}\right]^2 + \left[\frac{\partial |f(z)|}{\partial y}\right]^2 = |f^1(z)|^2$. (6)

- 3. a) i) Evaluate $\int_{C} \frac{e^{z}}{z^{2}} dz$ where C is |z| = 1. ii) Find the fixed point of $w = \frac{2z-1}{z}$ (2+2) b) State and prove Cauchy's integral formula. (5)
 - c) Show that the transformation $w = z^2$ transform the lines parallel to co-ordinate axes into a set of confocal parabolas in *w*-plane. (6)
- 4. a) i) Prove that $\Delta \nabla = \Delta \nabla$
 - ii) Prove that $E = e^{hD}$ where *E* is the shift operator, *D* is the differential operator and *h* is the interval of differencing. (2 + 2)

Contd.....2

QP CODE 50825

b) From the following table find the number of students who secured marks not more than 45 given that

Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No of Students	35	48	70	40	22

c) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.6 from the following table (6)

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
f(x)	7.989	8.403	8.781	9.129	9.451	9.750	10.031

- 5. a) i) Find $L[2\sin 3t + 4\cos 2t]$
 - ii) Find $L[\cosh 4t \sin 3t]$

b) Find the Laplace transform of periodic function $f(t) = \begin{cases} E & \text{for } 0 \le t < \frac{T}{2} \\ -E & \text{for } \frac{T}{2} \le t \le T \end{cases}$ and f(t+T) = f(t)(5)

c) If f(t) is continuous for $t \ge 0$. Find $L^{-1}\left[\frac{(1-e^{-2s})(1-3e^{-2s})}{8^2}\right]$ and evaluate F(1), F(3)and F(5). (6)

6. a) i) Find $L[t\cos at]$

ii) Find
$$L^{-1}\left[\frac{s+1}{s^2+2s-8}\right]$$
 (2+2)

b) Using convolution theorem find $L^{-1} \left| \frac{S}{\left(S^2 + a^2\right)^2} \right|$ (5)

c) Solve by using Laplace transforms $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{3t}$ given $y(0) = 0 \& \frac{dy}{dx} = 0$ when t = 0(6)

7. a) i) Evaluate
$$\Delta[x(x+2)]$$
 by taking $h = 1$
ii) Show that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$

$$(2+2)$$

Contd......3

Page No... 2

(2 + 2)

(5)

- b) Evaluate $\int_{0}^{1} e^{x} dx$ approximately in steps of 0.2 using Trapezoidal rule. (5)
- c) Using Simpson's $\frac{3}{8}^{th}$ rule evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by dividing the interval into 3 equal parts. (6)

8. a) i) Evaluate $\int_{0}^{6} y_{x} dx$ using Weedle's rule from the following data $\frac{x \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}{y_{x} \ 1 \ 0.5 \ 0.2 \ 0.1 \ 0.0588 \ 0.0385 \ 0.027}$

- ii) Using Picard's method of successive approximation find first approximation of $\frac{dy}{dx} = x + y \text{ given } y(0) = 1. \qquad (2+2)$
- b) Using modified Euler's method find an approximate value of y for x = 0(0,2) 0.4 for $\frac{dy}{dx} = x + y$. given y = 1 when x = 0. (5)
- c) Solve $\frac{dy}{dx} = xy$ for x = 1.2 given that y(1) = 2 by Runge Kutta method. (take h = 0.2) (6)

* * * * * * *