Q.P. Code 50821 Page No... 1

Third Year B.Sc., Degree Examinations

September /October 2015

(Directorate of Distance Education.)

PHYSICS

DSC 210: Paper III: Spectroscopy, Wave Mechanics, Statistical Mechanics, Relativity and Astrophysics

Time: 3 hrs.] [*Max.Marks:75/85*]

- Instructions: 1. Students who have attended 25 Marks IA Scheme will have to answer for total of 75 Marks.
 - 2. Students who have attended 15 Marks IA Scheme will have to answer for total of 85 Marks.
 - 3. Section E is compulsory for 85 Marks Scheme only.

SECTION - A

I. Answer ALL the questions.

(10X1=10)

- 1. What is the rest mass of photon moving with velocity of light?
- **2.** What is world line?
- 3. What is the time required for light to travel from a star at a distance of 8 light years to reach earth?
- **4.** Define phase space.
- **5.** What type of particles exhibits wave nature?
- **6.** How the population inversion is achieved in Ruby laser?
- 7. Write the application of laser in medical field.
- **8.** What is Paschen Back effect?
- 9. Give the expression for the maximum number of electrons in the or bit of principal quantum number 'n'.
- 10. Define Bohr magneton.

SECTION - B

II. Answer any FIVE questions.

(5X3=15)

- 11. State Moseley's law. Write its significance.
- 12. Explain the terms i) active medium ii) cavity resonator and iii) Population inversion.
- **13.** Obtain relativistic energy momentum relation.
- **14.** Compare the wave length of matter waves associated with electron and proton moving with same velocity.

Q.P. Code 50821 Page No... 2

- **15.** Explain gravitational bending of star light.
- **16.** Distinguish between M.B, F.D and B.E statistics.
- **17.** What is H.R diagram? Explain.

SECTION - C

III. Answer any FIVE questions.

(5X6=30)

- **18.** With necessary theory, discuss Thomson's method of determining e/m of an electron.
- 19. Describe Stern-Gerlach experiment with theory. Write its importance.
- **20.** State Duane-Hunt rule, Derive the Bragg's law of diffraction for X rays.
- 21. State and explain Uncertainty Principle. Show that the electrons can not be inside the nucleus using the principle.
- **22.** Derive time independent form of Schrödinger's equation.
- **23.** State postulates of special theory of relativity. Show that the phenomenon of simultanity is relative.
- **24.** Explain the Big-Bang theory of the universe with the experimental supports in favour of the theory.

SECTION - D

IV. Answer any TWO questions.

(2X10=20)

- **25.** a) Distinguish between normal and anamolous Zeeman effect.
 - b) Explain with neat diagram the experimental arrangement to observe the Zeeman effect.
 - c) In a normal Zeeman experiment, the calcium 4226 Å line splits into three lines separated by 0.25 Å in a magnetic field of 3T. Calculate the specific charge ratio of the electron.
- **26.** a) Write a note on NMR.
 - b) Describe the experimental arrangement to observe the Raman effect.
 - c) Mono chromatic X rays of wave length 0.15 Å undergoes Compton effect from a Carbon block. Calculate the wavelength scattered through 60° . (2+4+4)
- **27.** a) Set up the Schrödinger's equation for a particle in one-dimensional box and solve for Eigen functions and energy Eigen values.
 - b) The energy of a linear harmonic oscillator in its third excited state is 0.1 ev.

 Calculate the frequency of vibration. (7+3)

Contd...3

Q.P. Code 50821 *Page No... 3*

- **28.** a) Explain the principle, construction and working of He Ne laser.
 - b) The K.E of a particle is 3 times its rest mass energy. What is its velocity?

(6+4)

SECTION - E

V. Answer any ONE of the following questions. (Compulsory question for 85 marks scheme only)

(1X10=10)

- **29.** a) Describe the Michelson and Morley experiment. Write the expression for fringe shift. Give the Einstein explanation of null shift in the experiment
 - b) Calculate the velocity of the rocket relative to an observer so that its length to be contracted to 80% of its length at rest. (6+4)
- **30.** a) Explain the parallax method of determining the stellar distance.
 - b) Explain the formation of Black holes.
 - c) Calculate the distance modulus of star Spica which is 262.68 light years from the earth. (4+3+3)

** * * * **