September / October 2015

(Directorate of Distance Education)

MATHEMATICS

Paper - PM 10.05: DPB 510: COMPLEX ANALYSIS

Time: 3hrs.]

[Max. Marks: 70/80

Instructions to candidates:

- *i)* Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
- *ii)* Students who have attended 20 marks IA scheme will have to answer for total 80 Marks.
- *iii)* Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section B is compulsory for 80 marks.

SECTION – A

- 1. a) Prove that every power series represents an analytic function within the radius of convergence.
 - b) Verify that the function $f(z) = z^2$ satisfies the Cauchy-Riemann equations and determine the derivative f'(z).
 - c) Let $u(x, y) = x^2 y^2 + 2x$. Find the conjugate function v(x, y) such that f(z) = u(x, y) + iv(x, y) is an analytic function of z throughout the Z-Plane.

(7 + 3 + 4)

2. a) Determine the image path in the w – plane corresponding to the circle |z-3|=2 in the z – plane under the mapping $\omega = \frac{1}{z}$.

b) Find the images in w – plane of the lines $\operatorname{Re}(z) = \operatorname{constant}$ and $\operatorname{Im}(z) = \operatorname{constant}$ of the mapping $W = \frac{z-1}{z+1}$ (7 + 7)

- 3. a) Find the bilinear transformation that maps the three points z = 0, -i and -1 onto the three points w = i, 1, 0 respectively in the w plane.
 - b) If f(z) is analytic in the domain D and $f'(z_0) \neq 0$ then show that f(z) is conformal at $z = z_0$.
 - c) Determine where the following complex mappings are conformal : (i) $f(z) = z^3 - 3z + 1$ (ii) $f(z) = \cos z$ (7 + 3 + 4)
- 4. a) State and prove Cauchy theorem for a triangle.

Contd.....2

b) Define an index of a closed curve. Prove that index of a closed curve is an integer.

(8 + 6)

- 5. a) Prove that a bounded entire function is constant. Deduce the fundamental theorem of algebra.
 - b) Define an isolated singular point of the analytic function f(z). Classify three different types of isolated singular points and illustrate each with example. (8 + 6)

6. a) Derive i) the Taylor series representation of
$$f(z) = \frac{1}{1-z}$$
 about the point $z_0 = i$ and

ii) The Laurent series representation for
$$f(z) = \frac{e^{z}}{(z+1)^2}$$
 about $z_0 = -1$

b) State and prove Cauchy residue theorem. Hence evaluate
$$\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx$$
. (7 + 7)

- 7. a) State and prove maximum modulus principle.
 - b) Given an entire function $f(z) = \sin z$ and if R denotes the rectangular region $0 \le x \le \pi$, $0 \le y \le 1$, Show that |f(z)| has a maximum value on the boundary of R and not in the interior.
 - c) Show that the roots of $z^7 5z^3 + 2 = 0$ lie between the circles |z| = 1 and |z| = 2. (6 + 5 + 3)
- 8. a) State and establish Poisson integral formula.
 - b) State and prove Weirstrass factorization theorem. (7 + 7)

SECTION - B

- 9. a) Obtain the Taylor series representations of (i) $f(z) = \frac{1}{z}$ and (ii) $f(z) = z^2 e^{3z}$ about the point z = 3 and state the region of convergence for each. (5)
 - b) Use residue theorem, evaluate

$$\int_{0}^{2\pi} \frac{d\theta}{(1+a\cos\theta)} , \quad (-1 < a < 1)$$
(5)

September / October 2015

(Distance Education)

MATHEMATICS

Paper – PM 10.06: DPB 520: TOPOLOGY

Time: 3hrs.]

[Max. Marks: 70/80

Instructions to candidates:

- *i)* Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
- *ii)* Students who have attended 20 marks IA scheme will have to answer for total 80 Marks.
- *iii)* Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section B is compulsory for 80 marks.

SECTION – A

1. a) Let *X* be a topological space, *A*, $B \subset X$. Show that

 $(i) \overline{A \cup B} = \overline{A} \cup \overline{B} \quad (ii) \overline{A \cap B} \neq \overline{A} \cap \overline{B}$

- b) Let A be a subset of a topological space X and let A^1 be the set of all limit points of A. Prove that $\overline{A} = A \cup A'$.
- c) Let B and B^1 be bases for the topologies τ and τ^1 respectively on X. Then show that

 τ^1 is finer than τ if and only if for each $x \in X$ and each basis element $B \in B$

containing x there is a basis element $B^1 \in B^1$ such that $x \in B^1 \subset B$. (5 + 4 + 5)

- 2. a) Let X and Y be spaces, $f: X \to Y$. Show that f is continuous on X if and only if $f(\overline{A}) \subset \overline{f(A)}$ for $A \subset X$.
 - b) Prove that the space R^{ω} , the countably infinite product of R in the box topology, is not metrizable. (7 + 7)
- 3. a) Define a connected space. For a subset A of X, prove or disprove: A is connected implies \overline{A} is connected.
 - b) Let X_i be connected, $\bigcap X_i \neq \phi$. Show $\bigcup X_i$ is connected. (5+9)
- 4. a) Define a compact space. Show that a closed subspace of a compact space is compact and the image of a compact space under a continuous map is compact.
 - b) Define a first countable space. Let X be first countable and $A \subseteq X$, Prove that $x \in \overline{A}$ if and only if there is a sequence of points of A converging to x. (8 + 6)

QP CODE 56912

Contd.....2

5. a)	Let <i>X</i> be a topological space, $A \subset X$. Show that				
	i) If X is Hausdorff and A is compact, then A is closed.				
	ii) If X is compact and A is closed, then A is compact.				
b)	b) Prove that the space R_i , the real line with the lower limit topology is Lindel				
	separable but not second countable.	(8 + 6)			
6. a)	Define regular space, prove that X is regular if and only if given a point x in X and a neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subset U$.				
b)	Prove that every metrizable space is normal.	(7 + 7)			
7. State and prove Urysohn's lemma.(1)					
8. a)	Show that				
	i) a metric space is normal				
	ii) a regular Lindeloff space is paracompact.				
b)	Is R_e , i) Paracompact?				
	ii) Metrizable? Justify	(8 + 6)			

SECTION – B

- 9. a) Define a locally connected space *X*. Prove that a space *X* is locally connected if and only if for every set *U* of *X*, each component of *U* is open in *X*.
 - b) If $\{U_1, U_2, ..., U_n\}$ is a finite open covering of the normal space X, prove that there exists a partition of unity dominated by $\{U_i\}$. (5 + 5)

September / October 2015

(Directorate of Distance Education)

MATHEMATICS

Paper – PM 10.07: DPB 530: MEASURE THEORY AND FUNCTIONAL ANALYSIS

Time: 3hrs.]

[Max. Marks: 70/80

Instructions to candidates:

- *i)* Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
- *ii)* Students who have attended 20 marks IA scheme will have to answer for total 80 Marks.
- *iii)* Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section B is compulsory for 80 marks.

SECTION – A

- 1. a) Define a Borel Set. For any singleton set $\{x\}$, prove that $m^*\{(x)\}=0$.
 - b) Construct an uncountable set of measure zero.
 - c) If $\{I_n\}$ is a finite covering of open intervals of $Q \cap [0,1]$, show that $\sum l(I_n) \ge 1$. Is this true if $\{I_n\}$ is infinite? (5+4+5)
- 2. a) State Littlewood's three principles and prove any one of them.
 - b) State and prove Fatou's lemma. (8+6)
- 3. a) If $f \ge 0$ and measurable, show that \exists a sequence $\{\phi_n\}$ of simple functions such that $\phi_n \uparrow f$.

b) Let
$$f:[a, b] \to R'$$
 be increasing. Show f' exists a.e., and that $\int_{a}^{b} f' \le f(b) - f(a)$.
(7+7)

4. a) Find the Dini Derivatives of $f(x) = \begin{cases} 0 & x = 0 \\ x \sin \frac{1}{x} & x \neq 0 \end{cases}$ at x = 0.

- b) Define a function of bounded variation on [a, b]. With usual notations show that T = N + P and f(b) f(a) = P N.
- c) Let *f* be absolutely continuous on [a, b]. Show that *f* is of bounded variation on [a, b]. (4 + 5 + 5) *Contd*.....2

QP CODE 56913

- 5. a) Define a complete metric space. Prove that 1_p, 1≤ p <∞ is a complete metric space.
 Do 1_∞ is complete? Justify.
 - b) State and prove Banach Fixed point theorem. (8+6)
- 6. a) Show that there is no $f : \mathbb{R}^1 \to \mathbb{R}^1$ continuous only at rationals.
 - b) State and prove Lebesgue Covering lemma. (6 + 8)
- 7. a) Prove that the set of all continuous linear operators of a normed linear space into a Banach space is itself a Banach space.
 - b) Show that any two normed linear spaces with the same finite dimension are topologically isomorphic. (8+6)
- 8. a) State Hanh Banach theorem. Let M be a closed linear subspace of a normed linear space X and $x_0 \notin M$. If $d = d(x_0, M)$, then show that there exists a functional

 $f_0 \in X^*$ such that $f_0(M) = 0$ and $f_0(x_0) = 1$ and $||f_0|| = \frac{1}{d}$.

b) Prove that the space $l_p, 1 \le p < \infty$ is reflexive. Is the space l_1 reflexive? Justify. (8 + 6)

SECTION - B

9. If *f* is a real continuous function defined on a closed and bounded interval [a, b] and if $\varepsilon > 0$, prove that there exists a polynomial p such that $|f(t) - p(t)| < \varepsilon$ for $a \le t < b$. (10)

September / October 2015

(Directorate of Distance Education)

MATHEMATICS

Paper - PM 10.08: DPB 540: NUMERICAL ANALYSIS

Time: 3hrs.]

[Max. Marks: 70/80

Instructions to candidates:

- *i)* Students who have attended 30 marks IA scheme will have to answer for total 70 Marks.
- *ii)* Students who have attended 20 marks IA scheme will have to answer for total 80 Marks.
- *iii)* Answer any FIVE questions for both 70-80 marks scheme and Question No. (9) in Section B is compulsory for 80 marks.

SECTION - A

- 1. a) Derive the Newton-Raphson scheme to obtain the roots of an equation f(x)=0. use it to find an approximate root of the equation $x^3 5x + 1 = 0$.
 - b) Describe Bairstow's method to extract a quadratic factor of the form $x^2 + px + q$ from a polynomial of degree *n*. (7 + 7)
- 2. a) Find the solution of 83x+11y-4z=957x+52y+13z=1043x+3y+29z=71

by performing four iterations using any one of iteration matrix.

- b) Explain successive over relaxation method to solve the system Ax = b (8 + 6)
- 3. a) Find all the eigen values and the corresponding eigen vectors of the matrix

$$A = \begin{pmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{pmatrix}.$$

b) Find all the eigen values of the following matrix using Given's method

$$A = \begin{pmatrix} 1 & 6 & 0 \\ 6 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}.$$
 (8+6)
*Contd......*2

QP CODE 56914

- 4. a) Discuss the convergence criteria of Hermite interpolation polynomial of degree $\leq 2n+1$.
 - b) Evaluate $I = \int_{0}^{1} \frac{2x}{1+x^4} dx$ using Gauss Legendre and Gauss Chebyshev integration formula. (6 + 8)
- 5. a) Derive Lagrange's interpolation formula for the given data points $(x_i, y_i), i = 1, 2, ... n$
 - b) Obtain the least square approximation polynomial of degree one and two for $f(x) = \sqrt{x}$ on [0, 1]. (7 + 7)
- 6. a) Determine the cubic spline S(x) for the interval [2, 3] for the following tabulated values of x and y.

Х	1	2	3	4	5
Y	10	17	36	73	134

b) Derive cubic spline interpolation polynomial.

(7 + 7)

- 7. a) Derive Runge-Kutta 2nd order method to find the numerical solution to an IVP $y' = f(x, y), x_0, = y_0$
 - b) Use Adams predictor-corrector method to find y(0,8) and y(1,0) for an IVP, $y' = x^2 + y$, y(0) = 1, choose h = 0.2. (7 + 7)
- 8. a) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ by employing five point formulae which satisfies the following boundary conditions.
 - u(0, y) = 0 u(x, 0) = 0u(x, 1) = 100x, u(1, y) = 100y Choose h = k = 1.
 - b) Derive Crank Nicolson implicit formula for solving parabolic partial differential equation $\frac{\delta u}{\delta t} = \frac{\delta^2 u}{\delta x^2}$. (7 + 7)

SECTION – B

- 9. a) Use Secant method to find the real roots of $2x^3 + 3x 5 = 0$, perform four iterations.
 - b) Evaluate an integral $\int_{0}^{1} \frac{dx}{x^2 + 2x + 2}$ by dividing the given interval into equal 4, 6, 8 subintervals using Simpson's $\frac{1}{3}^{rd}$ rule. (5 + 5)