(5+10)

(10+5)

Final M.Sc., Degree Examinations September /October 2015

Directorate of Distance Education PHYSICS

DPB510: Paper V: Electrodynamics, Optics and Molecular Spectroscopy

Time: 3 hrs] [Max.Marks: 75/85

Instructions:

- 1. Answer any FIVE questions from Parts A,B and C without omitting any Part.
- 2. Part D is compulsory for those who appear for paper with maximum marks 85.

PART - A

- 1. a) Starting from Gauss law, obtain Poisson and Laplace equations.
 - b) Arrive at the multipole expansion of electrostatic potential.
- **2.** a) What are gauge transformations? Explain. Show that electric and magnetic fields are unaltered by gauge transformations.
 - b) Discuss the propagation of plane electromagnetic waves in free space. (8+7)
- **3.** a) Derive Poynting's theorem by using Maxwell's equations and hence obtain expression for the energy and momentum of electromagnetic field,
 - b) What are retarded Potentials? Explain.

PART- B

- **4.** a) State the boundary conditions for electromagnetic field.
 - b) Obtain Fresnel's formulae for reflection and refraction when the electric vector is polarized parallel to the plane of incidence. (4+11)
- **5.** a) Give the theory of light propagation in uniaxial and biaxial crystals.
 - b) Distinguish between normal and abnormal dispersion. (10+5)
- **6.** a) Explain the phenomenon of second harmonic generation in nonlinear optical material.
 - b) How an image can be recorded with Holographic technique? (7+ 5)

PART-C

7. Give an account of electronic spectra of diatomic molecules. (15)

Contd...2

- **8.** a) Explain the principle of Nuclear Magnetic Resonance, with a neat diagram.
 - b) Explain the working of NMR spectrometer.

(8+7)

- **9.** a) Give the theory of rotational and vibrational Raman spectra of diatomic molecules,
 - b) Write a note on Laser Raman Spectroscopy.

(12+3)

PART-D

10. Answer any TWO of the following:

(2X5=10)

- a) Biot-Savart law.
- b) Principles of laser.
- c) Electron spin resonance.

** * * * **

Final MSc., Degree Examinations

September /October 2015

Directorate of Distance Education

PHYSICS

DPB520 Paper – VI: Nuclear Physics, Cosmic Rays and Elementary Particles

Time: 3 hrs.] [Max.Marks:75/85

Instructions:

- 1. Answer any FIVE questions from Part A, B and C without omitting any Part.
- 2. Part D is compulsory for those who appear for paper with maximum marks 85.

PART - A

- 1. a) How nuclear radius is determined from a) alpha decay method and b) mirror nuclei method? Explain. (15)
- **2.** a) Obtain an expression for the energy loss due to ionization of proton like charged particles when they pass through matter.
 - b) Describe the principle and working of a gas filled counter. (10+5)
- **3.** a) With a neat schematic representation, explain the principle and working of Microtron. Also, mention few applications.
 - b) Write a note on the relationship between cross section and mean free path. (9+6)

PART - B

- **4.** a) Describe Fermi's theory of beta decay.
 - b) What do you mean by Mossbauer effect? Explain.

(10+5)

- **5.** a) Outline the general features of nuclear forces.
 - b) How do you account for the anomalous magnetic moment of neutron.
- **6.** a) How the Shell model explains the structure of nucleus? Explain.
 - b) Explain the fission process.

(10+5)

(9+6)

PART - C

- 7. a) With a neat diagram, explain the working of a nuclear reactor. Also obtain an expression for four factor formula.
 - b) Explain the need of reflectors in a nuclear reactor.

(10+5)

Contd...2

8.	a) Give an account of cosmic ray showers through their experimental evidences.	
	b) Describe the motion of charged particle in earth's magnetic field.	(8+7)
9.	a) How the elementary particles are classified? Explain.	
	b) Write a note on eight-fold way and quarks.	(9+6)
	PART - D	
10.	Write short notes on any TWO of the following:	
	a) Parity and isospin	5
	b) Nuclear Isomerism	5
	c) Moderators in reactor	5

** * * * **

Final M.Sc., Degree Examinations September /October 2015

Directorate of Distance Education PHYSICS

DPB 530: Paper VII: Solid State Physics - I

Time: 3 hrs] [Max.Marks: 75/85

Instructions:

- 1. Answer any FIVE questions from Parts A,B and C without omitting any Part.
- 2. Part D is compulsory for those who appear with maximum marks 85.

PART - A

- **1.** a) Arrive at dispersion relation for one-dimensional monoatomic lattice and discuss the properties of the one-dimensional dispersion relation.
 - b) Give a qualitative discussion on three-dimensional lattice vibrations. 8+7
- 2. a) Arrive at Boltzmann transport equation under relaxation time approximation.
 - b) Discuss Sommerfeld theory of electrical conductivity of metals. 7+8
- **3.** a) Discuss temperature dependence of resistivity of metals.
 - b) Explain normal and Umkalpp process of phonon collisions in solids. Why phonon contribution to thermal resistance is negligible at low temperatures? **8+7**

PART - B

- **4.** a) What is meant by polarization in dielectrics? Explain
 - b) Explain the terms "dielectric constant" and "dielectric losses".
 - c) What is meant by dipole relaxation? Derive Debye equation and discuss the condition for dielectric dispersion and resonance absorption.
- **5.** a) What are ferroelectric materials? How they are classified? Mention few applications of ferroelectric crystals.
 - b) Give the classical theory of electronic polarization in dielectric. 8+7
- **6.** a) Give Landau theory of first order phase transition.
 - b) Explain the processes of luminescence excitation and emission in solids. 8+7

8+7

PART-C

- 7. a) Discuss about first and second Fick's law of diffusion in solids.
 - b) Explain the process of ionic conduction in pure alkali halides.

8. a) Arrive at Nernst-Einstein relation of diffusion and apply the relation for ionic conductors

- b) Discuss the production of colour centers in solids by X-ray irradiation. 10+5
- **9.** a) Discuss about applications of diffusion, diffusion measurements and random-walk treatment of diffusion in solids.
 - b) Explain about different types of colour centers found in solids. 10+5

PART-D

10. Write a note on any TWO of the following:

2X5=10

- a) Hall effect
- b) Gudden Pohl effect
- c) The activation energy for the formation of defects in ionic solids.

** * * * *

Final MSc., Degree Examinations

September /October 2015

Directorate of Distance Education PHYSICS

DPB540: Paper - VIII: Solid State Physics II

Time: 3 hrs.] [Max.Marks:75/85

Instructions:

- 1. Answer any FIVE questions from Part A, B and C without omitting any Part.
- 2. Part D is compulsory for those who appear for paper with maximum marks 85.

PART - A

- **1.** a) Write the salient features of ferromagnetism? Describe the Weiss theory of ferromagnetism.
 - b) Give the theory of magnetic domains in a ferromagnetic material. (10+5)
- **2.** a) Describe the structure of ferrites. How is the magnetic moment of ferrite molecule calculated?
 - b) Explain two sublattice model for antiferromagnetic materials. (5+10)
- 3. a) Describe Casimir and Dupre's thermodynamical theory of spin lattice relaxation.
 - b) Explain the behavior of solutions of ³He in liquid ⁴He. (7+8)

PART - B

- **4.** a) Obtain an expression for an electrical conductivity in impurity semiconductors and explain the variation of electrical conductivity with respect to band gap.
 - b) Explain the term Fermi energy. How does Fermi energy vary with temperature and impurity density. (10+5)
- **5.** a) Obtain an expression for the Hall coefficient of a semiconductor in terms of mobilities.
 - b) Explain the effect of temperature, impurity concentration and magnetic field on Hall mobility. (9+6)
- **6.** a) Explain the generation and recombination rates of excess carriers in semiconductors.
 - b) Obtain continuity equation for excess carriers in semiconductors. (7+8)

Contd2

PART - C

- 7. a) Deduce an expression for the space charge density under high field transport.
 - b) Explain the theory of carrier transport in p-n junctions.

(8+7)

- **8.** a) Discuss the photo voltaic devices for radiation detection.
 - b) Explain the laser action in p-n junction diodes.

(9+6)

- **9.** a) Explain Type I and Type II superconductors with examples.
 - b) Write the applications of superconductors. Write a note on high temperature superconductors.
 - c) How are Cooper pairs formed in superconductors?

(6+6+3)

PART - D

10. Answer any TWO of the following:

- a) Write a note on Neel's temperature.
- b) Discuss impurity band conductivity.
- c) Write a note on photovoltaic devices.

(5 X2=10)

** * * * **