	सहाराष्ट्र कृषि में परोक्षा खि	तिता (मुख्या नान्छ - 19) पराक्षा- 2016 हिराबर, 2016	
	А प्रश्न	2016 पुस्तिका-III	ि प्रश्नपुस्तिका क्रमांक BOOKLET NO.	ODE : SO8
'		पर क्र2		एकूण प्रश्न : 200
वळ —		अभियांत्रिकी 		एकूण गुण : 4 00
(1)	<u>सदर प्रश्नपुस्तिकेत 200 अनिवार्य</u> प्रश्न आहेत. उमे	स्नू च्यना दवारांनी प्रश्नांची उत्त	रे लिहिण्यास सरुवात करण्याप	र्वी या प्रश्नपस्तिकेत सर्व
(1)	प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी.			
	लगेच बदलून घ्यावी. 👘			
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत			
. ,	न विसरता बॉल्पेनने लिहावा.	केंद्राच	 ो संकेताक्षरे	शेवटचा अंक
(3)	्य वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिके	वर विशिष्ट जागी उत्त		
(4)	या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे स्		- •	
	उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवर			
	उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकास काळ्या शाईचे बॉल्पेन वापरावे, पेन्सिल वा शाई		दशावला जाइल याचा काळजा	घ्यावी. ह्याकरिता फक्त
(5)	सर्व प्रश्नांना समान गु <u>ण आ</u> हेत. यास्त <u>व</u> सर्व प्रश्नांची		ठे चका होणार नाहीत याची दक्ष	
.,	वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्व	जर आहे पण एखादा प	गश्न कठीण वाटल्यास त्यावर	
	प्रश्नाकडे वळवे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत परतणे सोईस्कर ठरेल.	पोहोचल्यानंतर वेळ	शिल्लक राहिल्यास कठीण म्हा	गून वगळलेल्या प्रश्नांकडे ए
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार न	ही. नमूद केलेले उत्तर	खोडून नव्याने उत्तर दिल्यास ते त	ापासले जाणार नाही.
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करत			नाच गुण दिले जातील. 🛛 🗖
	तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपा			ग्य उत्तरच उत्तरपात्रकत 📋 👝
	नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत र करण्यात येतील''.	साडावलल्या प्रत्यक	चार चुकाच्या उत्तरासाठा	एका प्रश्नाच गुण वजा। ज
				एका प्रश्नाचे गुण वजा प्र मालमत्ता असून ती दर प्रश्नपुस्तिकेची ं वा अप्रत्यक्षपणे
ह	ग प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली	•	प्रश्नपुस्तिका आयोगाची	मालमत्ता असून ती 📙 🕏
प	रीक्षाकक्षात उमेदवाराल्त्र परीक्षेसाठी वापरण्य	ास देण्यात येत अ	गहे. ही वेळ संपेपर्यंत स	दर प्रश्नपुस्तिकेची 🛛
	त/प्रती, किंवा सदर प्रश्नपुस्तिकेतील क			ं वा अप्रत्यक्षपणे 🛱
	होणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध क			1
	तारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रव रतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुव			
	सिंदानुसार तसच प्रयोधन कार्यचाव्या तसुर ार्षाच्या कारावासाच्या आणि/किंवा रुपये एक	. उतार पतावाव इजार रकमेच्या व	दंडाच्या शिक्षेस पात्र होईत	ישישי איזרייי וויידי ג
	सेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ			
े_ग्	_र न्हा असून तसे करणारी व्यक्ती आयोगाच्या व	र्मचारीवृंदापैकी , '	तसेच परीक्षेच्या पर्यवेक्षक	ोयवृंदापैकी असली
त	रोही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुस	ार कारवाई करण्य ———————	ात येईल व दोषी व्यक्ती f	शेक्षेस पात्र होईल.
	पुढील सूचना प्रश्नपु	स्तिक च्या	अंतिम पृष्ठाव	र पहा

-

SEAL -

Α

Α

.

.

-

1.	Soil	Tillage consists o	f :						
	(1)	Breaking of Co	mpact	Earth Surf	face				
	(2)	Loosening the S	Soil						
	(3)	Only (1)							
	(4)	Both (1) and (2))						
2.	A co	ommon type of di	uster i	s used :					
	(1)	Plunger type			(2)	Knaj	psack type		
	(3)	Rotary type			(4)	All c	of the above		
3.	Swii	l plate is a part c	of:						
	(1)	Flat fan nozzle			(2)	Con	e nozzle		
	(3)	Spinning disc r	nozzle		(4)	Non	e of these		
4.	In ca	arburator type pe	trol er	- ngines, the	fuel is	ignite	d by :		
	(1)	high Compress	ion	_	(2)	elect	tric Spark		
	(3)	petrol Flame			(4)	all tl	he above		
5.	Iner	tial forces perper	ndicula	ar to the		ca	use the engine (o shak	
	(1)	camshaft	(2)	cranksha	ft	(3)	connecting roc	d (4)	cylinder head
6.	In d	lisc harrow, the s	pacing	g between a	liscs is	main	tained by :		
	(1)	Lever	(2)	Spool		(3)	Gang angle	(4)	Gang axle
7.	In c	onstant mesh typ	e tran	smission sy	ystem,	the ge	ears used are usu	ally :	
	(1)	Helical type			(2)	Wor	rm Gear		
	(3)	Bevel Gear			(4)	Stra	ight edge type		
8.	It is	the machine to c	ut the	crops and	ties th	em in	to neat and unif	orm sh	neaves :
	(1)	Reaper binder			(2)	Rea	per		
	(3)	Mower			(4)	Non	ne of these		
9.	In r	otary dusters, the	e hand	lle should l	be cran	ked fo	or efficient perfo	rmanc	e at :
	(1)	30 to 35 rpm	(2)	50 to 60	rpm	(3)	40 to 50 rpm	(4)	5 to 10 rpm
कच	च्या क	ामासाठी जागा /SPA	ACE F	OR ROUGI	H WOI	кќ			P.T.O.

SO8					4				Α
10.	Dev (1)	ice used to cont choke	trol engi (2)	ine speed w governor	ithin a	a speci (3)	fied limit, is ca turbocharge	alled : (4)	carburator
	(-)					(0)			
11.		per ASAE stand		e speed of P				r load is	:
	(1)	540±10 rpm			(2)		±10 rpm		
	(3)	1500 ± 10 rpn	n		(4)	1100	±10 rpm		
12.	ln c	ultivator with r	igid tyre	es, the work	ing de	epth is	controlled by	:	
-	(1)	guard rails	(2)	pegs		(3)	gauge wheel	(4)	spikes
13.		ler tractor testin ervations are ta	~		-	ower t	ake off at var	ying loa	d condition, the
	(1)	85% of the To	orque		(2)	Max	imum Power		
	(3)	Maximum To	rque		(4)	Both	(1) and (2)		
14.	The	ply rating of ty	res, use	d in tractor	is as :				
	(1)	4, 6 or 8	(2)	6, 8 or 12		(3)	2, 4 or 6	(4)	8, 10 or 12
15.	A h	 and hoe can be	attache	d with :					
	(1)	Blade	(2)	Tyre		(3)	Disc (4	4) All	of the above
16.		mechanism of n the hopper at				distrib	utor which de	eliver see	eds or fertilizers
	(1)	Metering me			(2)	Boot			
	(3)	Furrow open			(4)	Non	e of these		
 17.	Stic	ky belt method	is asso	ciated with					
	(1)	testing of see							
	(2)	seed drill per		5					
	(3)	power consu							
	(4)	seed calibrati	-						
18.	The	two possible fi	ring ord	lers of 4 - st	roke, -	4 - cyli	nder engines :	are :	
	(a)	1 - 2 - 4 - 3					Ů,		4 - 3 - 2 - 1
	• •	ich of the above	• • •			~ /			
	(1)	(a) and (b)		(b) and (d	I)	(3)	(b) and (c)	(4)	(a) and (c)

Α			5	SO8							
19.	tract	is defined as the ratio of th tion device.	e trac	actor drawbar pull to the dynamic load on the							
	(1)	Tractor power efficiency	(2)	Traction							
	(3)	Traction efficiency	(4)	Coefficient of traction							
20.	In Diesel cycle the heat is taken in at constant :										
	(1)	Pressure	(2)	Volume							
	(3)	Temperature	(4)	None of the above							
21.	The	tilt angle of the disk plow is the di	sk til	ilted backward at an angle of :							
	(1)	42 to 45° (2) 60 to 90°		(3) 15 to 25° (4) 125 to 165°							
22.	The	re are two main parts for shelling t	he gr	groundnut :							
	(1)	two rollers having less clearance									
	(2) crushing plates and grate										
	(3)	a set of rollers with varying clear	ance	e							
	(4)	a rotary blades and plate									
23.	The consumption of electricity in agriculture was about of the generated electric power in 1993 - 94 in India.										
	(1)	40 per cent (2) 30 per cer	nt	(3) 50 per cent (4) 35 per cent							
24.	In c	omputation of depreciation of mac	hine	e value, the salvage value, is taken as :							
	(1)	10% of operating cost	(2)	10% of capital invested							
	(3)	15% of useful life of machine	(4)	5% of operating cost							
25.	Flut	ed Feed type mechanism of seed di	rill co	consists of :							
	(1)	fluted wheel	(2)) feed roller							
	(3)	feed cut-off and adjustable gate	(4)) all above							
26.	The	main purpose of puddling is to :									
	(1)	reduce seepage	(2)) reduce leaching of water							
	(3)	kill the weeds	(4)) both (2) and (3)							

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

				consists	shaker		oundnut	-	27.
		pike tooth conveyer				0	Digging	(1)	
		one of these	(4) 1)	1) and (2)	Both (1) 	(3)	
perature remains	temp	re and volume when	o press	rith respe			change of tant is cal		28.
		obaric change	(2) i		nge	mal char	isotherп	(1)	
		one of the above	(4) 1		ge _	tic chang	adiabati	(3)	
d be at the center		oushes the pitman an iter of knife section s	e, the ce	s of the k	strokes	and out s		end	29.
Sofastication	(4)	3) Perfection	on (Registr	(2)	ation	Calibrat	(1)	
				ntial in :	s esser	n Pump i	Injection	 Fuel	30.
		etrol engines	(2) j			engines	diesel er	(1)	
		lone of the above	(4)			1 (2)	(1) and	(3)	
	_			er is to :	spraye	nction of	main fun	The	31.
		size	ffective	iroplets					
		STEC .				uie nyuiu	break th	(1)	
								(1) (2)	
			ne <mark>plan</mark> t	rmly ove	unifor	ute them	distribut	(1) (2) (3)	
			ne <mark>plan</mark> t	rmly ove	unifor ount o	ute them	distribut regulate	(2)	
		cessive application	ne plant avoid ex	rmly ove of liquid	unifor ount o	ute them te the am he above	distribut regulate	(2) (3) (4)	32.
		cessive application	ne plant avoid ex 	rmly ove of liquid	unifor ount o	ute them te the am he above	distribut regulate all of the ower tiller	(2) (3) (4)	32.
		cessive application	ne plant avoid ex uries fro (2)	rmly ove of liquid	unifor ount o ressure	ute them te the am he above ers the pr	distribut regulate all of the ower tiller 2 to 2.5	(2) (3) (4) In pe	32.
piston is at the	vhen	n : 1 to 1.4 kg/cm ²	ne plant avoid ex uries fro (2) (4) 4	rmly ove of liquid e of tyre	unifor ount o ressure m ²	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cr	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3.	(2) (3) (4) In po (1) (3)	32.
piston is at the	when	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ²	ne plant avoid ex uries fro (2) (1) (4) (1) entre (1)	rmly ove of liquid e of tyre	unifor ount o ressure m ² s, the T	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cr	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3.	(2) (3) (4) In po (1) (3)	
piston is at the	when	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ² DC) is the position, v	ne plant avoid ex uries fro (2) (2) (4) (2) entre (T (2) (1)	rmly ove of liquid e of tyre	unifor count o ressure m ² m ² s, the T	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cr e engines	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3. wo stroke top of it	(2) (3) (4) In po (1) (3) In tw	
piston is at the	vhen	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ² OC) is the position, v ottom of its stroke lle condition	entre (T (2) (4) (4) (2) (4)	rmly ove of liquid e of tyre: Fop Dead	unifor count o ressure m ² s, the T	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cr e engines its stroke e of its str	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3. wo stroke top of it	(2) (3) (4) In po (1) (3) In tw (1) (3)	
piston is at the	when	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ² DC) is the position, v ottom of its stroke lle condition	entre (T (2) (4) (4) (4) (4) (4) (4) (5) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	rmly ove of liquid e of tyre: Fop Dead	unifor count o ressure m ² s, the T coke e agric	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cr e engines its stroke e of its str	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3. wo stroke top of it middle of ght transf	(2) (3) (4) In po (1) (3) In tw (1) (3) Weig	33.
piston is at the	when	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ² OC) is the position, v ottom of its stroke lle condition	entre (T (2) (4) (4) (2) (1) (2) (1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	rmly ove of liquid e of tyre: Fop Dead	unifor count o ressure m ² s, the T coke e agric ase	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cm ² e engines its stroke e of its str sfer in the	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3. wo stroke top of it middle of ght transf <u>Pull × v</u>	(2) (3) (4) In po (1) (3) In tw (1) (3)	33.
piston is at the	when t	n : 1 to 1.4 kg/cm ² to 5.5 kg/cm ² DC) is the position, voltom of its stroke lle condition ven by : Pull × hitch height	entre (T (2) (4) (4) (4) (4) (5) tor is gi (2) (2)	rmly ove of liquid e of tyre: Fop Dead	unifor iount o ressure m ² s, the T soke e agric ase ight	ute them te the am he above ers the pr 5 kg/cm ² 3.0 kg/cm e engines its stroke e of its str sfer in the c wheel ba	distribut regulate all of the ower tiller 2 to 2.5 2.5 to 3. wo stroke top of it middle of ght transf <u>Pull × v</u> hitch <u>Pull × 1</u>	(2) (3) (4) In po (1) (3) In tw (1) (3) Weig	33.

.

Α			7	S	608
35.	The	horizontal component of	f pull, perpendi	licular to the direction of motion is called	:
	(1)	Lateral thrust ·	(2)	Side draft	
	(3)	Line of force	(4)	Centre of resistance	
36.	Imp	roved type of manually o	operated fruit h	harvester is :	
	(1)	Bamboo cone type	(2)	Hold and twist type	
	(3)	Pull and cut type	(4)	All of the above	
37.	Min	imum soil manipulation,	essential for till	llage requirements of crop production is ca	lled
	(1)	 zero tillage	(2)	minimum tillage	
	(3)	conservation tillage	(4)	secondary tillage	
 38.	A se	emi - automatic potato pl	anter consists o	of :	
	(1)	hopper (2)	metering disc	(3) furrow opener (4) all of the at	ove
<u> </u>	In d	ifferential unit of tractor,	the bevel pinic	ion, drives the :	
	(1)	Camshaft (2)	Crankshaft	(3) Crown gear (4) Flywheel	
40.		operation of an electro-c very gun with :	lynamic spraye	er is based on the droplets emerging from	the
	(1)	an atomizer	(2)	better penetration	
	(3)	extremely fine spray	(4)	an electric charge	
41.		ing winter season when a unulated at	-	cool, moisture pick up by stored grains wi	
	(1)	top	(2)	bottom	
•	(3)	both location	(4)	none of these	
42.	In tl	he centrifugal cream sepa	arator the crear	m is collected :	
	(1)	towards centre	(2)	towards periphery	
	(3)	both at centre and peri	iphery (4)	none of the above	
 कच्च	या का		R ROUGH WO	DRK	

.

P.T.O.

•

43. _ requires relatively higher power and is more susceptible to wear than other types of conveyor. (1)Belt conveyor (2)Screw conveyor (3) Bucket elevator (4)Pneumatic conveyor During sensible heating or cooling of air 44. remains constant. humidity ratio (1)wet bulb temperature (2) (3) enthalpy (4)relative humidity 45. _ sorters are fast, accurate and cause little damage to the fruit. (1)Weight Roller (3) Diverging belt (4) All of the above (2)46. ____ is the best type of separator to separate mustard seeds from wheat. Indented cylinder separator (2)Specific gravity separator (1)Centrifugal separator Spiral separator (3) (4)47. The relationship between thermal diffusivity (α), thermal conductivity (K), density(ρ) and specific heat (C_p) of a material is given by : (1) $\alpha = \frac{K}{\rho \cdot C_P}$ (2) $\alpha = \frac{\rho}{K \cdot C_P}$ (3) $\alpha = \frac{K \cdot C_P}{\rho}$ (4) $\alpha = \frac{K \cdot \rho}{C_P}$ deflects the flow of milk back into float tank when the temperature of milk at 48. the end of holder tube of HTST Pasteurizer is below the predetermined point. Poppet valve Expansion valve (1)(2)(3)Flow diversion valve (4) Flow control value $\left[\frac{M-Me}{Mo-Me}\right]$ is known as _____. 49. (2)Moisture ratio (1)Critical moisture content (3) Total heat Specific heat (4) 50. _ spheroid is formed when an ellipse rotates about its major axis. (1)Prolate (2) Oblate Round (4)Conic (3)

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

A

Α			9	SO8
51.		is used as a general pur	pose wra	pping paper with good mechanical strength.
	(1)	Kraft paper	(2)	Grease paper
	(3)	Tissue paper	(4)	Sulphite paper
52.	The	process of dehydration in which	h moistu	re is removed by sublimation is known as :
	(1)	Foam mat drying	(2)	Spray drying
	(3)	Freeze drying	(4)	Pneumatic drying
- <u>-</u>	Whi	ich of the following grain dryer	is not a c	continuous flow non-mixing type ?
	(1)	LSU drye r	(2)	Recirculatory batch dryer
	(3)	Baffle dryer	(4)	All of the these
54.		separates the material of	n the ba	sis of length of material.
	(1)	spiral separater	(2)	disk separater
	(3)	velvesse belt separater	(4)	specific gravity separater
55.	sum	indicates the uniformity of the weight fractions retained	-	d in resultant product and is defined as the each sieve divided by 100.
	(1)	Dryness fraction	(2)	Screen effectiveness
	(3)	Fineness modulus	(4)	Mixing index
56.		trifugal discharge type ators and processing plants.	is us	sed extensively for handling small grains in
	(1)	Belt Conveyor	(2)	Chain Conveyer
	(3)	Screw Conveyor	(4)	Bucket Elevator
57.	1-1	$RH = e^{-CTMen}$ is the	where,	
	RH	=Relative humidity, decimal;		
	'T =	Absolute temperature, K;		
	Me	=EMC, per cent (db);		
	C a	nd n=constants;		
	(1)	BET equation	(2)	Gibb's equation
	(3)	Henderson's equation	(4)	Baker and Arkema equation

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

•

.

.

P.T.O.

58. If ρ_b and ρ_t are the bulk density and true density of the grain respectively then void fraction or packing factor in a grain bed can be expressed as :

	(1)	$1 - \frac{\rho_b}{\rho_t}$	(4)	<mark>>Ե</mark> >t		(3)	$\frac{\rho_{b}}{\rho_{t}} - 1$	(4	4)	$1 - \frac{\rho_t}{\rho_b}$	
<u> </u>	The	moisture con	tent of solid	in equilib	rium	with t	he surround	ding con	diti	ons is :	-
	(1)	Equilibrium	moisture co	ontent	(2)	Mois	sture conten	t wet ba	sis		
	(3)	Moisture co	ntent dry ba	isis	(4)	Non	e of the abo	ve			
60.	The	Duhring plot	is used to f								-
	(1)	Effectivenes	s of evapora	ation							
	(2)	Pasteurizati	on effect				•				
	(3)	Pressure dif	ference in e	vaporator							
	(4)	The boiling	point elevat	ion				•			
61.	The	condition for	water at wh	nich all th	ree st	ates ex	kist together	r is calleo	 d :		-
	(1)	boiling poir	ıt		(2)	freez	ing point				
	(3)	single point			(4)	triple	e point				

- 62. Tylor series sieves used for grading of food grains should have consecutive sieves having screen opening sizes D_1 and D_2 such that :

(1)
$$\frac{D_1}{D_2} = 2$$
 (2) $\frac{D_1}{D_2} = \sqrt{2}$ (3) $\frac{D_1}{D_2} = \sqrt[3]{2}$ (4) $\frac{D_1}{D_2} = \sqrt[4]{2}$

- 63. Which of the following model can be used to explain rheological behaviour of biological materials ?
 - (1) Ficks model (2) Kelvin model (3) Planks model (4) Bonds model
- 64. In order to freeze an ice-cream mix its thermodynamic temperature is :
 - (1) higher than the freezing point of water
 - (2) Iower than the freezing point of water
 - (3) equal to the freezing point of water
 - (4) dependent upon water content of ice-cream mix

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

A			11	SO8
65.	In A	attrition mill, the material is reduce	ed by	
	(1)	impact	(2)	crushing
	(3)	shear	(4)	crushing and shear
66.	Whe	en the value of $n < 1$ for shear. Stre	ss-sh	ear rate curve of fluid, the fluid is called as :
	(1)	Newtonian fluid	(2)	Pseudoplastic fluid
	(3)	Dilatant fluid	(4)	None of above
67.		is a point on Force-deforma	ation	curve which shows failure in microstructure
	(1)	Rupture point	(2)	Bioyield point
	(3)	Creep	(4)	Stifness
68.		size reduction Rittinger's Law alwa Kick's Law.	ys gi	ves value for energy requirement
		• · • • · •		
	(1)	higher (2) lower		(3) same (4) none of these
 69.	The	velocity at which net gravitationa	al acc	(3) same (4) none of these
 69.	The		al acc (2)	· · · · · · · · · · · · · · · · · · ·
— 69.	The drag	velocity at which net gravitationa g force is called as :		elerating force equals the resisting upward
69. 70.	The drag (1) (3) Ang	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity	(2) (4)	celerating force equals the resisting upward Centrifuging velocity
	The drag (1) (3) Ang the	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity gle between base and slope of the co	(2) (4) one fo	celerating force equals the resisting upward Centrifuging velocity None of above
	The drag (1) (3) Ang the	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity le between base and slope of the co horizontal plane is :	(2) (4) one fo	celerating force equals the resisting upward Centrifuging velocity None of above
	The drag (1) (3) Ang the (1) (3)	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity gle between base and slope of the co horizontal plane is : Triangle	(2) (4) one fo (2)	celerating force equals the resisting upward Centrifuging velocity None of above rmed on free verticle fall of the grain mass to Angle of Repose
70.	The drag (1) (3) Ang the (1) (3)	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity de between base and slope of the co horizontal plane is : Triangle Tangent	(2) (4) one fo (2)	celerating force equals the resisting upward Centrifuging velocity None of above rmed on free verticle fall of the grain mass to Angle of Repose
70.	The drag (1) (3) Ang the (1) (3) St. V	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity le between base and slope of the co horizontal plane is : Triangle Tangent	(2) (4) one fo (2) (4)	relerating force equals the resisting upward Centrifuging velocity None of above rmed on free verticle fall of the grain mass to Angle of Repose Quadrangle
70.	The drag (1) (3) Ang the (1) (3) St. V (1) (3)	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity le between base and slope of the co horizontal plane is : Triangle Tangent Venant body represents ideal plastic behaviour	(2) (4) (2) (4) (2) (4)	relerating force equals the resisting upward Centrifuging velocity None of above rmed on free verticle fall of the grain mass to Angle of Repose Quadrangle ideal elastic behaviour initial elastic and then plastic behaviour
70. 71.	The drag (1) (3) Ang the (1) (3) St. V (1) (3)	velocity at which net gravitationa g force is called as : Critical velocity Terminal velocity de between base and slope of the con- horizontal plane is : Triangle Tangent Venant body represents ideal plastic behaviour ideal viscous behaviour	(2) (4) (2) (4) (2) (4)	relerating force equals the resisting upward Centrifuging velocity None of above rmed on free verticle fall of the grain mass to Angle of Repose Quadrangle ideal elastic behaviour initial elastic and then plastic behaviour

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

Α

73.	The	semi impirica	l model fo	or equilibri	um mo	oisture	e content		
	(1 -	$- Rh) = e \times p(-$	-CT _{ob} M _e) has bee	n deve	loped	l by	·	
	(1)	Smith			(2)	Nels	son		
	(3)	Chung and	Pfost		(4)	Hen	Iderson		
74.	Spee	cific gravity se	ed separa	ter is used	for gr	ading	of seeds on th	ne basis of	: :
	(1)	different siz	e and diff	erent spec	ific gra	vity			
	(2)	same size ar	nd differe	nt specific	gravity	,			
	(3)	different siz	e and sam	ne specific	gravity	7			
	(4)	same size ar	nd same s	pecific gra	vity				
75.		final weight c tent (db) :	of 2000 kg	of Paddy :	at 25%	Moist	ture content (c	lb) dried	to 14% moisture
	(1)	400 kg	(2)	800 kg		(3)	1600 kg	(4)	2000 kg
76.	Suit	able moisture	content fo	or safe stor	age of	padd	y is in the ran	ge of :	
	(1)	4 - 6%	(2)	10 - 12%	0	(3)	16 - 18%	(4)	22 - 24%
77.	Buk	hari type grai	n storage	structure,	used ir	n rura	l India is mad	e up of :	
	(1)	wood			(2)	stra	w		
	(3)	mud			(4)	galv	vanized iron		
78.	Dry	ing of paddy a	at excessi	ve high ter	nperat	ure ca	nuses :		
	(1)	increases pe	rcentage	of b r oken i	rice				
	(2)	reduces qua	ntity of ri	ce					
	(3)	reduces qua	lity of rice	e					
	(4)	all of the ab	ove						
79.	The	purpose of bl	anching c	f vegetable	es is :				
	(1)	to inactivate	e microor	ganisms	(2)	to k	ill selected mi	croorgani	sms
	(3)	to inactivate	e enzymes	5	(4)	non	e of the above		
80.			cles tend	s to remai	in near	r the	bottom of co	ntainer d	uring a mixing
	-	eration.		~ -		(=)	_		
	(1)	Light	(2)	Heavy		(3)	Dusty	(4)	Small

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

					13				SO8
81.	If fu	se in power sup	oply circ	uit of elect	ric mo	otor bl	ows off, one sl	hould ch	eck
	(1)	Grounded cor	ntacts		(2)	Shor	ted coil		
	(3)	Rating of the f	fuse wir	e	(4)	All d	of the above		
82.	Whi	ch of the follow	ing biog	gas plant d	oes no	ot supj	oly gas at cons	tant pres	ssure ?
	(1)	KVIC type bio	ogas pla	nt	(2)	Janta	a biogas plant		
	(3)	Pragati design	ı biogas	plant	(4)	Gan	esh biogas pla	nt	
83.	If th	e velocity of wi	nd at or	e place is o	louble	ed, the	available win	d power	will :
	(1)	be doubled			(2)	be ir	ncreased four f	old	
	(3)	be increased e	ight tim	es	(4)	rema	ains same		
84.	The	optimum pH a		perature f	or hig	gher b	iogas product	ion are .	an
	(1)	4 to 6 ; 10° to	20°C		(2)	7 to	7.5 ; 35° to 38°	°C	
	(3)	9 to 10 ; 38° to	₀ 55°C		(4)	8.5 t	o 9.5 ; 20° to 3	0°C	
85.	In d (1)	ish type solar co 100 - 150°C	ooker the (2)	e temperati 151-200°C		hievec (3)	l at the bottom 201-300°C	of the v (4)	essel is around 350-400°C
	(1)	-	(2)	151-200°C	2	(3)	201-300°C		
	(1)	100 - 150°C	(2) for Spa	151-200°C	С (SI) е	(3) engine	201-300°C		
	(1) In b	100 - 150°C iogas utilization SI engines can	(2) for Spa run con	151-200°C ark Ignition mpletely or	C (SI) e 1 biog	(3) engines as.	201-300°C	(4)	
	(1) In b (a)	100 - 150°C iogas utilization SI engines can	(2) 1 for Spa 1 run con dificatio	151-200°C ark Ignition mpletely or on in air inl	C (SI) e n biog let ma	(3) engines as. nifold	201-300°C s.	(4)	
85. 86.	(1) In b (a) (b)	100 - 150°C iogas utilization SI engines can It requires mo	(2) a for Spa a run con dificatio 95% m	151-200°C ark Ignition mpletely or on in air inl aximum bi	C (SI) e n biog let ma reak p	(3) engine as. nifold ower.	201-300°C s. and air cleane	(4)	
	(1) In b (a) (b) (c) (d)	100 - 150°C iogas utilization SI engines can It requires mo It can develop	(2) a for Spa a run con dificatio 95% m g should	151-200°C ark Ignition mpletely or on in air inl aximum bi	C (SI) e n biog let ma reak p	(3) engine as. nifold ower.	201-300°C s. and air cleane	(4)	
	(1) In b (a) (b) (c) (d)	100 - 150°C iogas utilization SI engines can It requires mo It can develop Ignition timin	(2) a for Spa a run con dificatic 95% m g should are :	151-200°C ark Ignition mpletely or on in air inl aximum bi	C (SI) e n biog let ma reak p	(3) engine: as. nifold ower. 9 45° B	201-300°C s. and air cleane	(4)	
	(1) In b (a) (b) (c) (d) Corr	100 - 150°C iogas utilization SI engines can It requires mo It can develop Ignition timin rect statements	(2) a for Spa a run con dificatic o 95% m g should are : ly	151-200°C ark Ignition mpletely or on in air inl aximum bi	(SI) e n biog et ma reak p ced to	(3) engine: as. nifold ower. 0 45° B (b) a	201-300°C s. and air cleane TDC.	(4)	
	(1) In b (a) (b) (c) (d) Corr (1) (3)	100 - 150°C iogas utilization SI engines can It requires mo It can develop Ignition timing rect statements (a) and (b) onl	(2) a for Spa dification o 95% m g should are : ly ly	151-200°C irk Ignition mpletely or on in air inl aximum bi aximum bi d be advan	(SI) e n biog et ma reak p ced to (2) (4)	(3) engine: as. nifold oower. 45° B (b) a (b) a (a) a	201-300°C s. and air cleane TDC. and (c) only and (d) only	(4) r pipe.	350-400°C
86.	(1) In b (a) (b) (c) (d) Corr (1) (3)	100 - 150°C iogas utilization SI engines can It requires mo It can develop Ignition timin rect statements (a) and (b) onl (c) and (d) onl	(2) a for Spa dification o 95% m g should are : ly ly	151-200°C irk Ignition mpletely or on in air inl aximum bi aximum bi d be advan	(SI) e n biog et ma reak p ced to (2) (4)	(3) engine: as. nifold oower. 45° B (b) a (b) a (a) a	201-300°C s. and air cleane TDC. and (c) only and (d) only	(4) r pipe. speed-r	350-400°⊂ atio
86.	(1) In b (a) (b) (c) (d) Corr (1) (3) As t (1) In v	100 - 150°C iogas utilization SI engines can It requires mo It can develop Ignition timin rect statements (a) and (b) onl (c) and (d) onl he number of bi	(2) a for Spa dification 95% m g should are : ly ly lades (so (2)	151-200°C irk Ignition mpletely or on in air inl aximum bi d be advan blidity) of v increases	(SI) en n biog let ma reak p ced to (2) (4) wind r onal p	(3) engines as. nifold ower. (45° B (b) a (a) a (a) a mill de (3)	201-300°C s. and air cleane TDC. and (c) only and (d) only ecreases the tip becomes one output can be	(4) r pipe. -speed-r (4)	350-400°C atio none of these

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

•

.

SO8

.

	Bioenergy is classified into three main groups.												
	(a)	Wood group	s										
	(b)	Agro - fuels											
	(c)	Urban waste	- based	fuels									
	• •	classification	is done b	у:									
	(1)	UNO	(2)	WHO		(3)	FAO	(4)	CWO				
90.	The	two safety co	des consi	der currer	nt value	es up l	to	_ as safe.					
	(1)	1.002 or 1.00	5 amp		(2)	0.00	3 or 0.005 ar	mp					
	(3)	2.001 or 2.00	4 amp		(4)	Non	e of the abov	ve -					
91.		tric motors op IC engine hav							as against				
	(1)	40 to 80%; 2	25 to 30%	, D	(2)	50 to	5 100% ; 26 t	to 30%					
	(3)	50 to 90% ; 2	28 to 30%	, D	(4)	Non	e of the abov	ve	.,				
92.	Even during the on-period, the maximum value of the current must not exceed and pulsating current of is considered satisfactory.												
	and	pulsating cur	rent or _		10 0010								
	and (1)	0.008 amp ;			(2)		3 amp ; 0.00						
			0.005 an	ıp		0.00	-	2 amp					
 93.	(1) (3) The	0.008 amp ; 1.005 amp ;	0.005 an 1.002 an	ıp rent in a d-	(2) (4) -c circui	0.00 Non	3 amp ; 0.00 le of the abov rectly propor	2 amp ve	he electromotive				
	(1) (3) The forc	0.008 amp ; 1.005 amp ; law states that	0.005 an 1.002 an 	np np rent in a d- tional to th	(2) (4) -c circui he resis	0.00 Non it is di tance	3 amp ; 0.00 ie of the abov rectly propor :	2 amp ve	he electromotive				
	(1) (3) The forc	0.008 amp ; 1.005 amp ; law states that and inversel	0.005 an 1.002 an 	np np rent in a d- tional to th	(2) (4) -c circui he resis	0.00 Non it is di tance Cur	3 amp ; 0.00 ie of the abov rectly propor :	2 amp ve	he electromotive				
	(1) (3) The forc (1)	0.008 amp ; 1.005 amp ; law states that and inversely Faraday's la	0.005 an 1.002 an t the curr y propor w	np np rent in a d- tional to th	(2) (4) -c circui he resis (2) (4)	0.00 Non it is di tance Cur	3 amp ; 0.00 te of the abov rectly propor : rent's law	2 amp ve	he electromotive				
93.	(1) (3) The forc (1) (3)	0.008 amp ; 1.005 amp ; law states that e and inversel; Faraday's la Voltage law	0.005 an 1.002 an t the curr y propor w	np rent in a d- tional to th	(2) (4) -c circui he resis (2) (4) d.	0.00 Non it is di tance Cur Ohn	3 amp ; 0.00 e of the abov rectly propor : rent's law n's law	2 amp ve	he electromotive				
93.	 (1) (3) The force (1) (3) (a) 	0.008 amp ; 1.005 amp ; law states that and inversely Faraday's la Voltage law It is a highly	0.005 an 1.002 an t the curr y propor w inflamm	np rent in a d- tional to th nable liquid of C ₅ - C ₁	(2) (4) -c circui he resis (2) (4) d. d.	0.00 Non it is di tance Cur Ohn	3 amp ; 0.00 e of the abov rectly propor : rent's law n's law	2 amp ve	he electromotive				
93.	 (1) (3) The force (1) (3) (a) (b) (c) 	0.008 amp ; 1.005 amp ; law states that e and inversely Faraday's la Voltage law It is a highly It consists es	0.005 an 1.002 an t the curr y propor w inflamm ssentially 5°C rang	np rent in a d- tional to the nable liquid of C ₅ - C ₁ res betwee	(2) (4) -c circui he resis (2) (4) d. d.	0.00 Non it is di tance Cur Ohn	3 amp ; 0.00 e of the abov rectly propor : rent's law n's law	2 amp ve	he electromotive				

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Α

95. In wind mill, micrositing and proper project formation can minimize losses due to. (a) Air density (b) Wake loss Blade contamination loss (c)Wind turbine availability and loss (d) Transformer and line loss (e) Grid and controller loss (f) **Answer** options : (1)(a), (b) and (c) only (2)(d) and (e) only All of these (3)(f) only (4)96. Issues with 100% extension of power to rural areas are : The use of power being small and seasonal. (a) The rural schemes fail to yield revenues commensurate with the capital spent on (b) taking power to the little pockets of population. To overcome the increasing costs of rural electrification schemes extensive research (c)into cheaper methods of supplying electricity to rural areas is must. All the statements above are : All are false All are partially true (1)(2)All are true (3)All are partially false (4)97. In relation between earth and sun. Sun is on the average 1.5×10^8 km away from the earth. (a) Earth has a mass of 1.989×10^{30} kg. (b) Sun has 332150 times the mass of earth. (c)Choose the correct statements : (1)(a) only (2)(c) only (3)(a) and (c) only (4)(b) only 98. In Biomass. (a) CHN (i) changes in ash melting behaviour, ash utilization (b) Sulphur and chlorine (ii) calorific value, NO, emission Major elements pollution, aerosol formation (c) (iii) Minor elements corrosion, pollution (SO_y) (iv)(d) Correct sequence is : (**d**) (a) (b) (c) (1)(vi) (ii) (i) (iii) (2)(ii) (iv) (i) (iii) (3)(ii) (i) (iv) (iii) (4) (iii) (iv) (i) (ii)

15

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Α

P.T.O.

SO8

SO8

99. Electric motors can be used in farm work. Induction motors may be classified	ed as :
--	---------

- (1) single phase motors and two phase motors
- (2) single phase motors and three phase motors
- (3) single phase motors and polyphase motors
- (4) none of the above

100.	In b	riquetting proces	ss.								
	(a)	Biomass densif	ication	is carried	out						
	(b)	Binder can be t	used								
	(c)	Loose biomass	energy	7 is 100 - 20	00 kg/1	m ³					
	Ans	wer options :									
	(1)	(a) and (c) Tru	e		(2)	(b) and (c) True					
	(3)	(a) and (b) Tru	e		(4)	(a) and (c) False					
101.	Fact	ors to be conside	ered in	the locatio	on of w	vindows are :					
	(1)	Distribution of	light		(2)	Prevalent direction	on of wind	1			
	(3)	Control of ven	tilatior	L	(4)	All of the above		••			
102.	The	The density index of most of the building material is :									
	(1)	Less than unity	y		(2)	More than unity					
	(3)	Unity			(4)	None of the abov	re				
103.	An	uneven span typ	e gree	n house is	constr	ucted on	·				
	(1)	plain surface			(2)	hilly terrain					
	(3)	sandy surface			(4)	all of the above					
104.		earthing of elect l about :	tric fen	cing is do	ne by p	placing a metal rod	to a dept	h below groun			
	(1)	15 cm	(2)	30 cm		(3) 45 cm	(4)	60 cm			
105.		t up covered area enerally known a		ured at the	floo r l e	vel of the basement	or any sto	rey of a buildin			
	(1)	Carpet area			(2)	Plinth area ,					
	(3)	Floor area			(4)	None of the abov					

17

Α		17											
106.	A co	ouple - close ro	of can b	e adopted e	econor	nicall	y upto a span	of	·				
	(1)	3.50 m	(2)	4.20 m		(3)	4.20 cm	(4)	5.50 m				
107.		keeping door is vided on each s						ection 300) mm×6mm are				
	(1)	Hold fast	(2)	Jamb		(3)	Still	(4)	Head				
108.	The (1) (2) (3) (4)	bearing capaci maximum los area of steel j factor of safe soil load to fa	ad to are plate to 1 ty to bea	ea of steel pl maximum le pring capaci	late Dad		of						
 109.		ectric fencing fr second and of						ot on for a	bout				
	(1)	$\frac{1}{6}, \frac{1}{8}$	(2)	$\frac{1}{5}, \frac{1}{10}$		(3)	$\frac{4}{5}, \frac{3}{10}$	(4)	$\frac{1}{10}, \frac{4}{5}$				
110.	A k	ing post truss i	s suitabl	e for roofs o	of spa	n vary	ving from						
	(1)	5 - 8 m	(2)	2 - 6 m		(3)	4 - 9 m	(4)	5 - 10 m				
111.		at is the vertica e 6 per cent ?	l interva	al between o	contoi	ır bur	nd using C.E.	Ramser f	ormula for land				
	(1)	1.0 m	(2)	1.1 m		(3)	1.2 m	(4)	1.3 m				
112.	Max	imum angle or	slope a	t which the	soil re	emain	s stable is call	ed as :					
	(1)	angle of repo	se		(2)	angl	le of inclinatio	n					
	(3)	angle of tilt			(4)	angl	le of sublimati	.0 n					
113.	Hyp	osometric curve	shows	the relation	ship b	etwee							
	(1)	relative grad:	ient and	relative are	a of d	Iraina	ge basin						
	(2) relative relief and relative height												
	(3) relative height and relative area of drainage basin												
	(4)												

•

.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

,

SO8

114.		ch type of run-of ous purposes ?	f harve	esting meth	od is 1	nainly	done for buildi	ing a big	, water stock for		
	(1)	Short term			(2)	Lon	g term				
	(3)	Roof top			(4)	Nor	e of the above				
115.		ne rational metho which of the follo	-		of peak	c rate	of run-off, the ra	ainfall ir	ntensity is taken		
	(1)	As equal to inf	iltratio	n rate of so	il						
	(2)	As equal to ϕ i	ndex o	f soil							
	(3)	For a duration	equal	to the time	of co	ncentr	ation .				
	(4)	As unity									
116.		ing a particular port the healthy	0	0			moisture and r	ainfall a	re indequate to		
	(1)	Vegetative dro	ught		(2)	Hyc	trological droug	ght			
	(3)	Agricultural d	rought		(4)	Met	eorological droi	ught			
117.	What is the relation of erosive power of water flow and velocity of run-off ?										
	(1)	Square of veloo	city	-	(2)	Cub	e of velocity				
	(3)	Equal to veloci	ty		(4)	$\sqrt{V_0}$	elocity				
118.	Wha	at is the sampling	g effici	ency of VU	N bed	l load	samples ?				
	(1)	60%	(2)	65%		(3)	70%	(4)	75%		
119.	Whi	ch is the alterna	te nam	e for rising	limb	of hyd	trograph ?				
	(1)	Reverse curve			(2)	Con	centration curv	ve			
	(3)	Straight curve			(4)	S - 0	curve				
120.	Reco	ommended safe	velocit	y of channe	el flow	with	good vegetative	e cover :	is :		
-	(1)	1.20 m/sec	(2)	1.50 m/s	ec	(3)	0.90 m/sec	(4)	0.60 m/sec		
121.	The	material bounci	ng alor	ng the bed i	is nam	ned by	which load ?				
	(1)	Contact	(2)	Saltation		(3)	Suspended	(4)	Bed		
कच्च	्रा का	मासाठी जागा /SP.	ACE F	OR ROUGH	 - WO	RK					

18

Α

,

SO8

,

A

Ŋ

122. In gully control structure design, the flow velocity is reduced by :

	(1)	By p	rovidi	ing loi	ngitud	linal s	ills					
	(2)	Ву р	rovidi	ing sto	one pi	itching	g of d	lowns	tream	channel		
	(3)	By c	reatin	g hyd	raulic	jump	,					
	(4)	Ву р	rovidi	ing de	signe	d side	walls	5				
123.	Graj	ohical	repre	sentat	ion of	rainf	all pa	irame	ters as	:		
	X ax	is - cu	mulat	tive ti	me							
	Y ax	is - cu	mmul	lative	rainfa	III is ti	tled a	as				
	(1)	Mass	s raini	fall cu	rve			(2)	Rain	fall Intensity	7 Histogra _F	h
	(3)	(3) Rainfall Intensity - Hytograph (4) Unit Hydrograph										
124.	Wha 2.0 r		he de	sign	depth	n of p	arabo	olic sl	haped	waterway	having hy	draulic radius
	(1)	2.5 r	n		(2)	3.0 г	n		(3)	3.5 m	(4)	4.0 m
125.		at is t per ce		rizon	tal d	istanc	e in	metre	e betw	een two te	rraces hav	ing land slope
	(1)	24 п	ı		(2)	25 n	ſ		(3)	26 m	(4)	60 m
126.		Set '	'A'				Set	'B'				
	(a)	Enve	elope	curve		(i)	Stre	am di	ischarg	e versus per	rcent time	
	(b)	S-cu	rve			(ii)	Floc	od pea	ak-area	relation		
	(c)	Dou	ble m	ass cu	rve	(iii)	Uni	t hyd	rograp	h		
	(d)	Flow	v-dura	tion o	urve	(iv)	Cha	nge i	n regio	on of raingau	1ge station	
						(v)	Stre	am flo	ow ver	sus time	•	
	The	correc	t sequ	ience	is :							
		(a)	(b)	(c)	(d)							
	(1)	(ii)	(111)	(i v)	(v)							
	(2)	(v)	(i)	(ii)	(iii)							
	(3)	(iii)	(i)	(iv)	(ii)							
	(4)	(i)	(iv)	(ii)	(v)							

20

127. State the characteristic on which the nature of hydrograph is dependent :

- (1) Rainfall characteristics (2) Watershed characteristics
- (3) Both (1) and (2) (4) None of the above

128. Hydraulic radius is rate of :

- (1) rainfall : run-off
- (2) volume : area
- (3) cross sectional area : wetted perimeter
- (4) wetted perimeter : cross sectional area

129. Which amongst the following is the ratio of soil loss from land cropped under specified conditions to corresponding soil loss from continuous flow on identical soil, slope and rainfall condition ?

- (1) Land management factor (2) The slope length factor
- (3) Crop management factor (4) Conservation practice factor

130. Which of the following conservation measures is not advisable either technically or economically on the soils exceeding 20% slope ?

- (1) Bench terraces (2) Stone terraces
- (3) Rock bolts (4) Contour trenching
- **131.** The protection of downstream side of earth dam against water erosion is achieved through the use of ______.
 - (1) rock pitching (2) concrete slab
 - (3) berms (4) chimney drain

132. The delineation of priority area can be performed to some extent by :

(b) and (d)

- (a) Reconnaissance survey
- (b) Study of topo-sheet
- (c) L-section of drainage line
- (d) Coding of watershed
- Answer options :
- (1) (a) and (c)

- (3) (a) and (b)
- (c) and (d)

(4)

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

(2)

A 21 **SO8** 133. Which design consists of determining the dimensions of different components of the structure ? Hydrologic design (1)Hydraulic design (2)(3) Structural design (4)Stability design 134. What is the limit for watershed area to compute the direct run-off, from unit hydrograph method ? (1)5000 sq.km 8000 sq.km (2)(3) 10,000 sq.km (4)12,000 sq.km 135. What are derived for ungauged watersheds by computing various coefficients expressing physical features of the watershed ? Synthetic unit hydrograph (1)(2)S-curve Run-off hydrograph (3)S-hydrograph (4)**136.** The function of core wall in dam section is to : (1)control seepage and thus to check piping action (2)control cracking of dam section (3)increase vertical downward pressure (4)deflect the seepage line within base of dam 137. Where the stream takes to meandering and eroding the banks and where the cuts are vertical, which measure is effective amongst following? Retaining wall (4) (1)Spurs (2)Gabions (3)Culverts 138. What is the value of direct run-off from peak flow rate (Qp) 300 m^3/s and base flow $25 \text{ m}^3/\text{s}$? $12 \text{ m}^3/\text{s}$ $275 \text{ m}^3/\text{s}$ $325 \text{ m}^3/\text{s}$ $7500 \text{ m}^3/\text{s}$ (1)(2)(3)(4) 139. The line on a map, joining places with equal evapotranspiration is referred as : Isopleths Isobar Isohyet (1)Isochrone (3)(4)(2)140. Bifurcation ratio of watershed is determined by using the formula : $Rb = Nu \times (Nu + 1)$ $Rb \approx Nu/(Nu+1)$ (1)(2) $Rb = (Nu)^{(k-u)}$ None of the above (3)(4)कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK P.T.O.

22

141. While developing Unit Hydrograph for a particular catchment, its duration should :

	(1)	be equal to basin lag	(2)	not be more than $\frac{1}{5}$ to $\frac{1}{3}$ of basin lag						
	(3)	be less than $\frac{1}{10}$ of basin lag	(4)	be 10 hours						
142.		n contour plan of the site, the ca es by which of the following rule		of the farm pond is calculated for different ula ?						
	(1)	Chezy's formula	(2)	Manning's formula						
	(3)	Simpson's rule	(4)	Kutter's formula						
143.		v much per cent space occupied lway ?	l by flo	oor blocks to width of stilling basin of drop						
	(1)	10 - 20 per cent	(2)	20 - 30 per cent						
	(3)	30 - 40 per cent	(4)	50 - 60 per cent						
144.		at is the length of contour bund 0 m ?	per he	ctare area of land having horizontal interva						
	(1)	5000 m (2) 200 m		(3) 50 m (4) 500 m						
145.	Whi	ich type of terrace is required to t	facilitat	te uniform impounding of water ?						
	(1)	Strip terrace								
	(2)	Level bench terrace								
	(3)	Sloping outwardly bench terra	ce							
	(4)	Sloping inwardly bench terrace	e .							
146.	Circ	culatory ratio of watershed is the	ratio o	f :						
	(1)	Number of streams to area of v	watersh	ned						
	(2)	Axile width of basin to axile le	ngth of	basin						
	 (3) Area of watershed to area of circle whose radius is equivalent to radius of equivalent perimeter of watershed/basin 									
	(4)	Perimeter of basin to circumfe watershed	erence (of circle whose area is equivalent to area o						

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

.

Α						23				SO8
147.			ing a unif is done on			the i	dentit	y to each and	d every w	atershed, which
	(1)	Delir	neation			(2)	Cod	ing		
	(3)	Reco	nnaissanco	e		(4)	Area	al photograp	hy	
148.			rainfall zo ent soil slo		hat will be	the ve	ertical	interval betw	een the co	ntour bunds for
	(1)	30 cr.	n	(2)	60 cm		(3)	90 cm	(4)	120 cm
149.	A fu gauş		iving bottl	le indi	cates		rainfa	ll depth, at a	time for S	bymon type rain
	(1)	1.25	cm	(2)	1.25 mm		(3)	1.05 m	(4)	1.20 cm
150.	The	peak c	lischarge p	ortior	n of hydrog	raph i	s knov	wn as :		
	(1)	Risin	glimb			(2)	Tip			
	(3)	Crest	t			(4)	Non	e of the abov	re	
151.				ed in d	nd 'R' is the lesign of wa v ² /R	aterwa	ays is	•		ndex of channel R ² /v
152.	On	which	theory/for	mula _/	law the set	tling o	of susp	pended mater	rial in the	water is based ?
	(1)	Stric	kler's form	nula		(2)	Shie	ld's formula		
	(3)	Bligh	ís theory			(4)	Stok	e's law		
- <u>-</u> 153.			0			ded (1	nm) a	nd area attrib	uted in Th	iessen's polygon
	Stat	ion	Rainfall		Area					
			(mm)		(Ha)					
	A1		15		30					
	A2		12		25					
	A3		20		32					
	Wha	at will	be the ave	erage r	ainfall (mm) by T	hiesse	n's polygon :	method ?	
	(1)	15.67	⁷ mm	(2)	15.98 mm	ı	(3)	29.00 mm	(4)	None of above
n 					OR ROUGH					

.

.

SO8					24					А	
154.		v many waters 1noff ?	shed chara	acteristics	will be o	evalua	ated in cook's	method fo	or determi	nation	
	(1)	Two	(2)	Three		(3)	Four	(4)	Five		
155.		ermine total l cm/h and dur							d, if Φ ir	ndex is	
	(1)	6 cm	(2)	8 cm		(3)	12 cm	(4)	10 cm		
156.		ermine the value th of drainage		n factor f	or water	shed	having 50 sq	.km. area l	naving 10	0,000 m	
	(1)	0.10	(2)	0.20		(3)	0.40	(4)	0.50		
157.		ch method is of 4000 sq. k		able for co	omputir	ig me	an areal prec	ipitation fo	or the wat	tershed	
	(1)	Arithmetic	mean		(2)	Isohyetal					
	(3)	Theissen Po	lygon		(4)	Nor	ne of these				
158.	For mountaneous regions of temperate, mediterranean and tropical zone, there should be one hydrometry station for area.										
	(1)	300 to 1000			(2)) to 5000 km	2			
	(3)	5000 to 200	00 km²		(4)	2000	00 to 25000 l	km ²			
159.	 Fielo	d measureme	nt of chan	nel flow a	as belov	v :					
	(a)	Average ve	locity of f	low = 1.5	0 m/sec	2					
	(b)	Average cro	oss sectior	n =1.20 m	n ² of cha	nnel	upto flow lev	vel			
	Wha	at was run off	frate? W	'hat woul	d be rui	n-off v	volume if flov	w time is o	ne minut	e?	
	(1)	1.80 m ³ /sec	and 108	m ³	(2)	1.08	m ³ /sec and	10.8 m ³			
	(3)	1.25 m ³ /sec	: and 75 r	n ³	(4)	0.80	m ³ /sec and	48 m ³			
160.		ich of the fo sification ?	ollowing	soil prof	ile chai	acter	is not requ	ired for l	and cap	ability	
	(1) Soil texture				(2)) Soil depth					
	(3)	Infiltration	rate of soi	1	(4)	Ava	ailability of n	utrients			
			_								

•

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

.

SUS

	(1)	Mechanical ((2)	Chute		(3)	Pipe		(4)	Emergency	
162.		r a catchment area o	of 1 k	m², volum	e of v	water o	due to 1 o	cm rainfa	all wil	l be represented	
	as : (1)	10 ³ litres			(2)	ากสา	litres				
	(3)	10^7 litres	•		(2) (4)		e of the a	above			
163.	Wha	t is the rainfall amo	ount i	n excess o	f	index	is referre	d ?			
	(1)	Infiltration ((2)	W - index		(3)	Rainfal	l excess	(4)	Percolation	
164.	Purpose of underground dams is to :										
	(1) to control sub surface soil movement										
	(2)										
	(3)										
	(4)	to enhance soil in	filtrat	ion							
	Which structure is used to make run-off water to trickle rather than to rush out ?										
165.	Whi	ch structure is used	to m	iake run-ol	ff wa	ter to	trickle ra	ther tha	n to ru	ish out ?	
165.	Whi (1)	ch structure is used Chute spillway	to m	nake run-ol	ff wa (2)		trickle ra o spillwa		n to ru	ish out ?	
165.			to m	uake run-oi		Droj		у	n to ru	ish out ?	
	(1) (3) Whi	Chute spillway			(2) (4)	Droj Grac	p spillwa led bunc	y I			
	(1) (3) Whi	Chute spillway Pipe spillway 	used t	o record t	(2) (4)	Droj Grac ead or	p spillwa led bunc	y l of run-			
	(1) (3) Whi cont	Chute spillway Pipe spillway 	used t	o record t	(2) (4) 	Droj Grac ead ov Velo	o spillwa led bunc ver crest ocity mete	y l of run-	off me		
 166. 	 (1) (3) Whit contt (1) (3) 	Chute spillway Pipe spillway 	ised t aingau	o record t 1ge	(2) (4) he h	Droj Grac ead ov Velo	o spillwa led bunc ver crest ocity mete	y l of run-	off me	easuring device	
 166. 	 (1) (3) Whit contt (1) (3) 	Chute spillway Pipe spillway ch instrument is u inuously ? Self Recording Ra Anemometer	used t ningau e gen	o record t 1ge	(2) (4) he h	Drog Grad ead ov Velc Auto	o spillwa led bunc ver crest ocity mete	y of run- er ater stag	off me ge Lev	easuring device	
 166. 	 (1) (3) Whi cont (1) (3) Dug 	Chute spillway Pipe spillway ch instrument is u inuously ? Self Recording Ra Anemometer 'out farm ponds are	e gen	o record t 1ge	(2) (4) .he h (2) (4)	Drop Grad ead ov Velc Auto Emb	o spillwa led bunc ver crest ocity meto omatic w	y of run- er ater stag	off me ge Lev	easuring device	
 166. 167.	 (1) (3) Whit contt (1) (3) Dug (1) (3) Free 	Chute spillway Pipe spillway ch instrument is u inuously ? Self Recording Ra Anemometer 'out farm ponds are On stream ponds	abov	o record t 1ge erally : e the depti	(2) (4) (4) (2) (4) (2) (4) (4) h of f	Drop Grad ead ov Velc Auto Emb Sunt	o spillwa led bunc ver crest ocity mete omatic w pankment ken ponc	y of run- er ater stag type po ls	off me ge Lev onds	el Recorder	
 166. 167.	 (1) (3) Whit contt (1) (3) Dug (1) (3) Free 	Chute spillway Pipe spillway ch instrument is u inuously ? Self Recording Ra Anemometer 'out farm ponds ar On stream ponds Off stream ponds	abov	o record t 1ge erally : e the depti	(2) (4) (4) (2) (4) (2) (4) (4) h of f	Drop Grad ead ov Velo Auto Emb Sunt Lowing	o spillwa led bunc ver crest ocity mete omatic w pankment ken ponc	y of run- er ater stag type po ls	off me ge Lev onds	el Recorder	

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

•

P.T.O.

.

SO8

25

.

•

. A

- **169.** Which term is used for failure in hydraulic structure takes place, in which there is removal of materials from the foundation by flow of seepage water ?
 - (1) Sliding (2) Compression (3) Crushing (4) Piping
- 170. The temporary structures are constructed where :
 - (a) Soil of the gulley is found unstable in nature
 - (b) Collection of sufficient amount of soil on their upstream portion is pre-requisite.
 - (c) The area is in remote
 - (d) Checking the gulley erosion until sufficient vegetation has been established. Answer options :
 - (1) Only (a) (2) (b) and (d) (3) Only (c) (4) (a) and (c)

171. Reynolds number is used to determine :

- (1) Hydraulic conductivity of soil
- (2) Seepage flow from earthen dam
- (3) Whether the flow is laminar or turbulent
- (4) Hydraulic resistance of flow

172. Using the criteria of best economical section, the bottom width of trapezoidal channel in black soil for flow depth of 0.30 m would be ______.

(Given, $\tan(45) = 1$, $\tan(60) = 1.73 \tan(90) = \infty$, $\tan\left(\frac{45}{2}\right) = 0.41$)

(1) 0.25 m (2) 0.30 m (3) 0.45 m (4) 0.60 m

173. A higher operating pressure at the sprinkler nozzle yields :

- (1) larger drops falling away from the sprinkler nozzle
- (2) larger drops falling close to the sprinkler nozzle
- (3) very fine drops falling close to the sprinkler nozzle
- (4) very fine drops falling away from the sprinkler nozzle

 174. The width of a border usually varies from _____.

 (1) 3 to 15 m
 (2) 2 to 8 m
 (3) 4 to 20 m
 (4) 5 to 10 m

175.		recommended sa /) soils range from		its of land	slope (longit	udinal) for effic	ient irr	igation in heavy		
	(1)	0.05 to 0.20%	(2)	0.20 to 0	.40%	(3)	0.25 to 0.65%	(4)	0.65 to 0.85%		
176.	Cav	itation is referred	l to as	formation	of :						
	(1)	cavities filled w	vith so	il due to lo	cal pres	ssure	drop				
	(2)	cavities filled w	vith liq	luid vapou	r due to	o loca	l pressure drop				
	(3)	release of entra	pped	air							
	(4)	none of above									
177.	Whi	ch component of	canal	system is	suppos	ed to	be maintained t	by the f	armer ?		
	(1)	Distributory	(2)	Water co	ourse	(3)	Minor	(4)	Branch canal		
178.	The orifices are classified as :										
	(a)	circular orifice			(b)	tran	gular orifice				
	(c) rectangular orifice (d) square orifice										
	Ans	wer options :									
	(1)	only (a)			(2)	only	' (a) , (b) and (d)	ł			
	(3)	only (a), (c)			(4)	all (a	a), (b), (c) and (c	ł)			
179.	A p	recise method of	compi	uting the v	olume	of ear	thwork in land l	levellin	g is :		
	(1)	four point meth	nod		(2)	pris	moidal method				
	(3)	end area metho	od		(4)	non	e of these				
180.	The	centre of pressu	re for a	a pl a ne ver	tical in	mers	ed surface lies a	t:			
	(a)	the top of the i	mmer	sed <mark>sur</mark> face							
	(b)	the bottom of t	he im	mersed sur	face						
	(c)	a depth of one-	-third	the height	of the i	mme	rsed surface				
	(d)	a depth of two	-third	the height	of the i	imme	rsed surface				
	Ans	wer options :									
	(1)	only (a)	(2)	only (a)	and (b)	(3)	only (c)	(4)	only (d)		
_ 181.	What will be the value of centroid of rectangular field having 20 stake points and sum of elevation of all these points is 198.0 m.										
		09.90 m	(2)	19.80 m		(3)	00.99 m	(4)	00.09 m		

कच्च्या कामासात्री जागा /SPACE FOR ROUGH WORK

.

· A

27

P.T.O.

182. In case of land grading with modern heavy earth moving equipment, the cut fill ratio should be :

(1)	zero	(2)	one
(3)	greater than one	(4)	less than one

183. Which of the term in general form of Hooghoudt's equation is the drainage criterion for steady state ground water conditions ?

(1)	<u>म</u> प	(2)	$\frac{t}{\ln\left(1.16h_o/h_t\right)}$
(3)	KD	(4)-	<u>Kd</u> μ

184. Ten meter vertical column of oil whose specific gravity is 1.23 will exert the pressure at bottom equivalent to :

- (1) 1.23 m of water column (2)
- 2) 12.30 m of water column
- (3) 8.13 m of water column
- (4) None of above

- **185.** In saline soils :
 - (a) pH is less than 8.5
 - (b) ESP is less than 15
 - (c) ECe is more than 4 dS/m
 - (d) ECe is less than 4 dS/m

only (a), (b) and (c)

(e) pH is more than 8.5

Answer options :

(3)

- (1) only (a), (b) and (d)
- (2) only (b), (c) and (e)
- (4) only (b), (d) and (e)
- 186. The cut-back stream concept of furrow irrigation cannot be used in :
 - (1) graded furrows laid along the slope
 - (2) contour furrows laid on gently sloping grade
 - (3) level furrows on heavy soils
 - (4) corrugated furrows

Α		,			29						SO
187.	Wheat requires 60 cm of water during 120 days. In this case an average outlet factor in hectares/cumec is :										
	(1)	864	(2)	1728		(3)	432		(4)	Non	e of abov
188.	Coel	ficient of storage i	is the p	property o	of :						
	(a)	Confined aquifer	r								
	(b)	Unconfined aqui	ifer								
	(c)	Semi confined ac	quifer								
	Ans	wer options :									
	(1)	all (a), (b) and (c)		(2)	only	(b) and	(c)			
	(3)	only (a) and (c)			(4)	only	(a) and	(b)			
189.	On the basis of the entry of water into the well, tube wells are classified as :										
189.	On t	he basis of the ent	лу ог ч	water mit							
189.	On t (1)		•				low well	ls and d	leep we	ells	
189.		he basis of the ent Screen wells and Drilled wells and	cavity	y wells	(2) (4)	Shal	low wel er table		-		ells
	(1) (3)	Screen wells and Drilled wells and 	cavity drive	y wells en wells	(2) (4)	Shal .Wat	er table	wells ar	nd arte:	sian w	
	(1) (3) Follo	Screen wells and Drilled wells and 	drive	y wells en wells used while	(2) (4) e decid	Shal Wat	er table	wells ar	nd arte:	sian w	
	(1) (3) Follo well	Screen wells and Drilled wells and wing criteria shou s.	drive drive ld ben not b	y wells en wells used while e of same	(2) (4) e decid	Shal _Wat ling he	er table	wells an distance	e betwo	sian w een tw	o adjacer
	(1) (3) Follo well (1)	Screen wells and Drilled wells and wing criteria shou s. The wells should The pumping of	l cavity I drive Id be u I not b one w	y wells en wells used while e of same rell should	(2) (4) e decid e depth d not a	Shal Wat	er table	wells an distance	e betwo	sian w een tw	o adjacer
	 (1) (3) Followell (1) (2) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well.	l drive l drive lld be u l not b one w d yield	y wells en wells used while e of same rell should d same di	(2) (4) e decid e depth d not a scharg	Shal Wat	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) 	Screen wells and Drilled wells and wing criteria shou the wells should The pumping of adjacent well. Both wells shoul	l drive l drive ild be i l not b one w d yield vell ca	y wells en wells used whil- e of same rell should d same di n be relea:	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v	l drive l drive ild be i l not b one w d yield vell ca	y wells en wells used whil- e of same rell should d same di n be relea:	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) The 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v	l drive l drive ild be i l not b one w d yield vell ca	y wells en wells used whil- e of same rell should d same di n be relea:	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) The (a) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v basic methods of 1 Plane method	d vield d vield d yield d yield	y wells in wells used while e of same rell should d same di n be releas velling do	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) The (a) (b) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v basic methods of I Plane method Profile method	d vield d vield d vield d vield d vield and le	y wells in wells used while e of same rell should d same di n be releas welling do	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) The (a) (b) (c) (d) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v basic methods of I Plane method Profile method Plan inspection s	d vield d vield d vield d vield d vield and le	y wells in wells used while e of same rell should d same di n be releas welling do	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. sily to	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c
190.	 (1) (3) Followell (1) (2) (3) (4) The (a) (b) (c) (d) 	Screen wells and Drilled wells and owing criteria shou s. The wells should The pumping of adjacent well. Both wells shoul Water from one v basic methods of 1 Plane method Profile method Plan inspection s Contour adjustm	d vield d vield d vield d vield d vield and le	y wells in wells used while e of same rell should d same di n be releas welling do	(2) (4) e decid e depth d not a scharg sed eas	Shal Wat ling he ffect t e. fily to are :	er table prizontal he cone	wells an distance of depre	e betwo	een tw	o adjacer er table c

٠

,

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

.

P.T.O.

.

192. If the hydraulic conductivity is same in all directions, the soil is said to be :

- anisotropic soil (2)heterogeneous soil (1)
- none of these (3) isotropic soil (4)

193. Leaching requirement means :

- supply of additional water with irrigation water (1)
- supply of additional fertilizers with irrigation water (2)
- (3)supply of additional amendments with irrigation water
- (4)

194. The interrelationship between the depth of the subsurface drain and spacing between subsurface drain is characterised below.

- More the depth, more is the spacing (a)
- (b) More the depth, less is the spacing
- There is no influence of depth on spacing (c)

Answer options :

(1) (a) only (2) (b) only	(3)	(c) only	(4)	(a) and (c) only
---------------------------	-----	----------	-----	------------------

195. In case of lift irrigation scheme, the term used when the pump house is located directly over the well.

(a) jack well

(b) sump well

Answer options :

- (a) only (1)
- both (a) and (b) none of (a) and (b) (3)(4)

196. The following efficiency is the ratio between water stored in the root zone during irrigation and the water needed in the root zone prior to irrigation.

(2)

(b) only

- (1)water application (2)water storage
- (3)water distribution (4)water conveyance
- 197. Which one of the following amendments is not added in alkali soils to dissolve calcium carbonate for its reclaimation ?
 - (1)Gypsum
- Single super phosphate (2)

Sulphuric acid

(3)Sulphur (4)

- supply of additional micro nutrients with irrigation water

198. The field drainage system may consist of :

(a)	open drains	(b)	mole drains
(c)	pipe drains	(d)	cross drains
Ansv	ver options :		
(1)	only (a), (b) and (c)	(2)	only (a), (b) and (d)
(3)	only (b), (c) and (d)	(4)	only (a), (c) and (d)

199. When speed of pump is varied from n_1 to $n_{2'}$ the head H_1 will vary to :

(1)	$H_2 = H_1 \left(\frac{n_1}{n_2}\right)^3.$	(2)	$H_2 = H_1 \sqrt{n_1 n_2}$
(3)	$H_2 = H_1 \left(\frac{n_1}{n_2}\right)^2$	(4)	$H_2 = H_1 \left(\frac{n_2}{n_1}\right)^2$

200. Which of the following method is not a land levelling design method?

(1) contour adjustment method
(2) profile method
(3) cut and fill method
(4) plan inspection method

- o 0 o -

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

सूचना -- (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः वरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank :

प्र. क्र. 201.	I congratulate you your grand success.
	(1) for (2) at
	(3) on (4) about
	ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे बर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
प्र. क्र. 201.	1 2 • 4
	अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्रसीत्या पुरविलेल्या
	उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता
	फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.