GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VIII.EXAMINATION – WINTER 2016

Subject Code: 180503

Date: 21/10/2016

Subject Name: Process Simulation & Optimization Time: 02:30 PM to 05:00 PM Instructions:

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Maximize $f = 6x_1 + 5x_2$, subject to : $2x_1 + 5x_2 \le 20$, $-5x_1 x_2 \le -5$, 07 $-3x_1 - 11x_2 \le -33$ using Simplex method. (Show 3 simplex table)
 - (b) Suppose the foods listed below have calories, protein, calcium, vitamin A and cost per 100 gm as shown. In what amounts should these foods be catered to soldiers to meet at least the daily requirements listed while minimizing the total cost.

	Bread	Meat	Potatoes	Cabbage	Milk	Gel	Required
Calories	1254	1457	318	46	309	1725	3000
Protein	39	73	8	4	16	43	70
Calcium	418	41	42	141	536	0	800
Vitamin	0	0	70	860	720	0	500
А							
Cost	30	100	5	8	23	48	

- Q.2 (a) Trace the path using Path Tracing Method for a set of the following equations 07 in functional form : $f_1(x_1,x_2)=0$, $f_2(x_4)=0$, $f_3(x_3,x_6)=0$, $f_4(x_4,x_5)=0$, $f_5(x_1,x_6)=0$, $f_6(x_2,x_3,x_5)=0$
 - (b) Explain six steps used to solve optimization problem.

OR

- (b) Explain obstacles to optimization.
- Q.3 (a) Explain the evaluation of nature of convexity by examining the eigen values of multivariable function and determine the convexity of function $f(x) = -2x_1^2 + 3x_1x_2 2x_2^2$.
 - (b) Explain following terms : Partitioning, Tearing, Precedence ordering, Boolean 07 matrix

OR

- Q.3 (a) State the necessary and sufficient conditions for a minimum or maximum of 07 function of single variable and determine extremum of $f(x) = x^5$.
 - (b) Explain the algorithm of Steepest Descent method for unconstrained **07** multivariable optimization problem.
- **Q.4** (a) Minimize $f(x) = x^4 x + 1$ using Newton's method for a starting point of x=0.6422 (Show 3 iterations).
 - (b) Explain briefly 'Sequential Modular Approach'.

OR

- **Q.4** (a) Minimize function $f(x) = x / (1 + x^2)$ using Golden section method. Start with **07** initial interval = (-0.6, 0.75)
 - (b) Apply Lagrange Multipliers method to minimize $f(x) = 4x_1^2 + 5x_2^2$ subject to 07 constraint : $2x_1 + 3x_2 6 = 0$
- Q.5 (a) Explain fitting of VLE data by Non linear regression. 07
 - (b) Derive the equation for optimum pipe diameter.

07

07

07

07

- Q.5 (a) State objective functions in terms of the adjustable variable for chemical 07 reactor.
 - (b) Obtain an objective function to minimize total cost with respect to the working 07 fluid temperature in optimizing recovery of waste heat.
