Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (OLD).EXAMINATION – WINTER 2016

Subject Code: 160105 Date: 24/10/201 Subject Name: Computational Fluid Dynamics -II			
Time: 10:30 AM to 01:00 PM Total Marks: 70			
Inst	ructio 1. 2. 3.	ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Why transformation is needed? Obtain equations of first derivative with	07
	(b)	respect to x,y & t to be transformed into derivatives with respect to ξ , η and τ . Explain the development of upwind scheme. Explain the same for first order wave equation. Also state the disadvantages of upwind scheme.	07
Q.2	(a) (b)	Write a short note on beam warming method. Explain the organization of Navior Stokes equation code for the supersonic viscid flow over the flat plate	07 07
	(b)	OR Draw the flow chart for the main program for the flow over the flat plate.	07
	(0)		07
Q.3	(a) (b)	Discuss the calculation of step size in space and time for flow over flat plate. Explain Godunov approach.	07 07
0.3	(a)	OR Discuss the causes of development of the unwind method specify the advantages and	07
Q.3	(a)	disadvantages of the schemes.	07
	(b)	Explain TVD and flux limiters in brief	07
Q.4	(a)	Write a short note on Abbet's boundary conditions for the Prandtl Mayer	07
	(b)	Get the roots of one dimensional, unsteady inviscid flow using the methods of Jacobians	07
04	(9)	OR Explain the main transformation and inverse transformation of partial differential	07
V	(a)	equations	07
Q.4	(b)	Write the generic form for Euler's equation for a steady, two dimensional expansion waves and transform each term of Euler's set in terms of flux terms $F_1,F_2,F_3 \& F_4$	07
Q.5	(a)	Explain the procedure to apply the shock capturing method in a subsonic,	07
	(h)	supersonic flow through the convergent divergent nozzle. Explain in detail applications of CFD solvers.	07
		OR	
Q.5	(a)	Explain in detail the common boundary conditions applied to the fluid flow problems.	07
	(b)	Draw the flow chart for shear stress calculation for a supersonic viscous flow over a flat plate at zero incidences	07
