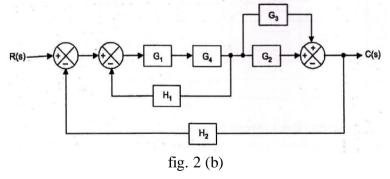

GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (OLD).EXAMINATION – WINTER 2016

Subject Code: 160304 Subject Name: Bio-Medical Control Theory Time: 10:30 AM to 01:00 PM Instructions:

Date: 25/10/2016


Total Marks: 70

- structions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Explain open loop and closed loop system with suitable example of each. 07
 - (b) Compare Transfer function approach with state space approach.
- Q.2 (a) What is analogous system? Establish force-current and force-voltage analogy. 07
 - (b) Determine the transfer function for the following signal flow graph using the Mason's gain formula.

(b) Determine the transfer function T(s)=C(s)/R(s) of the following system using 07 block reduction technique.

Q.3 (a) For unity feedback system having open loop transfer function

$$G(s) = \frac{k(s+2)}{s(s3+7s2+12s)}$$

Find i) Type of System ii) All error coefficients iii) Steady state error for input $r(t) = R/2.t^2$

(b) Consider sixth order system with characteristic equation $S^{6}+2s^{5}+8s^{4}+12s^{3}+20s^{2}+16s+16=0$

Determine stability of the system using Routh's criterion.

07

07

07

07

Q.3	(a)	A system is given by differential equation $\frac{d2y}{dx^2} + 4\frac{dy}{dx} + 8y = 8x$	07
	(b)	$dx^2 = dx$ Where y is output and x is input. Determine time domain specification. i) Rise Time ii) Peak Time iii) Settling Time iv) Peak overshoot. The characteristic equation of a closed loop control system is given by $S^4+10s^3+35s^2+50s+24=0$	07
		For this system determine the number of roots to the right of the vertical axis located at $s = -2$.	
Q.4	(a)	A unity-feedback system has open-loop transfer function	07
		$G(s) = \frac{4}{s(s+1)(s+2)}$	
	(b)	Sketch the bode plot of G(jw) & determine the phase margin & gain margin of the system. Sketch the root-Locus & comment on the stability of a unity-feedback control system having the open-loop transfer function as follow $G(s) = \frac{10}{s(s-1)(2s+3)}$	07
		5(5 2)(25+6)	
Q.4	(a)	OR The open-loop transfer function of a control system is	07
		$G(s)H(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$	
	(b)	Draw the bode plot and determine phase margin and gain margin. Consider a system with open loop transfer function as $G(s) = \frac{10}{s(s-2)(s+4)}$	07
~ -		Obtain its polar plot.	
Q.5	(a)	State the output time response relationship for a second order system for a step input with suitable diagram. Give the meaning of different terms associated with it. Show the effect of damping on time response of a second order system with waveforms.	10
	(b)	Explain in detail Nyquist stability criteria.	04
OR			
Q.5	(a)	 Explain the following terms in brief: (1) Sensitivity (2) Regulating system (3) Servomechanism (4) Bandwidth (5) Gain margin (6) Transfer function (7) Phase margin (8) Resonant frequency (9) State space (10) State variables 	10
	(b)	Explain in brief M circles & N circles.	04
