GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (OLD).EXAMINATION – WINTER 2016

S	ect Code: 160505 Date: 24/10/2016 ect Name: Computer Aided Process Synthesis	10/2016			
] I	Time: 10:30 AM to 01:00 PM Total Marks Instructions: 1. Attempt all questions.				
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 			
Q.1	(a)	Discuss steps involve in construction of attainable region using CSTRs and PFRs.	07		
	(b)	Discuss in brief environmental issues and various safety considerations in product and process design	07		
Q.2	(a)	What is pinch point? Explain its importance in heat exchanger network synthesis giving step wise procedure to design heat exchanger network using pinch design approach.			
	(b)	Discuss in brief about design opportunities and general steps in product and process design.	07		
	(b)	OR List the heuristics for determining favorable sequence of distillation operation.	07		

- Q.3 (a) Explain Heat Pumping, Vapour Recompression and Reboiler Flasing 07 configuration for increasing thermodynamic efficiency of distillation columns.
 - (b) For the heat exchanger synthesis problem, following stream information is 07 available:

Stream	Tin,	Tout,	FCp,
	Κ	Κ	kW/K
H1	430	340	15
C1	310	395	7
C2	370	460	32

Find out minimum utility targets and pinch point for $\Delta T_{min} = 20$ K using temperature interval method.

OR

- Q.3(a) Write a short note on side stripper and side enriches.07(b) Discuss effect of operating pressure on TQ diagram for distillation column and explain the concept of multi-effect distillation as possibility of energy integration.07
- Q.4 (a) Discuss Thompson and King Formula to compute the Number of possible 07 sequences for separation.
 - (b) You are to separate the following relatively ideally behaving mixture of A, B, and C. The feed is at its bubble point of 345.8 K at 1 bar. Feed contains 50 kmol/hr A, 100 kmol/hr B and 30 kmol/hr C. The Antoine constant for A are 11.1, 3000, -70, for B are 10.2, 2800, -70, and for C are 10,3000, -70; where T is in K and pressure is in bar. Which sequence is better, direct or indirect? Why?

integration in distillation columns .

(b) We have a mixture of five alcohols labeled as A, B, C, D and E with flows in the feed of 1, 0.5, 1, 7 and 10 mol/s respectively, for a total of 19.5 mol/s and relative volatilities are 4.3,4,3,2, and 1 respectively. The information about marginal vapor flows estimated for non-key species are as under:

	А	В	С	D	Е
A/B			2.6	6.5	3.2
B/C	5.3			9.3	4.0
C/D	2.4	1.3			6.7
D/E	1.5	0.8	2.0		

Find the best distillation based separation sequence.

Q.5 (a) What is Gantt Chart? Why do you use Gantt Chart? Draw a Gantt chart 07 for the following processing times in the sequence of AAABBB (Single Campaigns) and ABABAB (Multi Campaigns).

	Stage 1	Stage 2
Α	5	2
В	2	4

(b) Define span and cycle time for batch processes. Explain various transfer policies 07 with example

OR

- Q.5 (a) Discuss effect of transfer policies on cycle time for multi product batch plant. 07
 - (b) A given batch plant produces one single product for which stage 1 requires 8 hours/batch; stage 2, 4 hours/batch and stage 3, 7 hours/batch. If zero wait transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours?
