17426

16117 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any SIX of the following:

12

- (i) Write expression for kinematic viscosity.
- (ii) What type of fluid is H₂O?
- (iii) If N_{Re} is 1700, what is the type of flow.
- (iv) Write expression to calculate friction factor for laminer flow.
- (v) Define schedule number. What does it indicate?
- (vi) Give specific application of a centrifugal pump.
- (vii) Name an equipment which can be used for producing vacuum without a moving part.

		Mark	ZS.
	b)	Attempt any TWO of the following:	8
		(i) Differentiate average velocity and point velocity on following points:	
		1) formula which can be used to calculate	
		2) Variation in the value of same	
		(ii) Draw a sketch of a gage valve and name its parts.	
		(iii) Differentiate a variable head meter and a variable area meter on the following points:	
		1) variation in pressure	
		2) ease of handling	
		3) cost	
2.		Attempt any <u>FOUR</u> of the following:	6
	a)	Derive an expression to calculate pressure at a point in a liquid column whose height from surface of liquid is 'h' cm and density of liquid 9 gm/cm ³ .	
	b)	Why it is necessary to calculate friction in a pipe? Does it change with nature of fluid.	
	c)	What is the ultimate safe devise used in a pressure vessel to avoid accident? Explain its working.	
	d)	What do you mean by NPSH? Write expression for the same.	
	e)	Reynolds number is 5000. Calculate the fannings friction factor.	
	f)	What do you understand by callibration of a flow meter? Draw a callibration curve for a rotameter.	
3.		Attempt any <u>FOUR</u> of the following:	6
	a)	Derive an expression for calculating pressure drop using a U-tube manometer.	
	b)	Why pressure drop in a globe valve is more than a gate valve?	

[3] 17426

Marks

- c) Differentiate a reciprocating pump and a centrifugal pump on the following points:
 - (i) category of which they belong
 - (ii)cost
 - (iii) pressure developed
 - (iv) efficiency
- d) Give the pressure range developed by a blower, fan and a compressor.
- e) What is a Newtonian fluid? Give relation between shear stress and shear strain for this type of fluid.
- Draw diagram to relate head developed, efficiency and BHP to volumetric flow rate for a centrifugal pump.

4. Attempt any FOUR of the following:

16

- Draw sketch of any two commonly used pipe fittings and their use.
- b) Name any dimensionless number you have studied and show that it is dimensionless.
- c) Draw a diagram of a centrifugal compressor.
- d) Draw a neat diagram of a venturimeter and name its different parts.
- e) From the following diagram find the velocity at point B. Refer Fig. No. 1

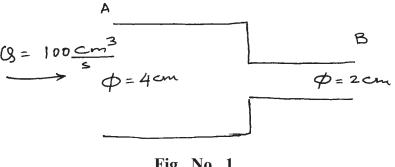


Fig. No. 1

f) A mercury manometer shows a pressure drop of 1.4 cm. Find out the pressure drop in terms of H₂O column.

17426		[4]	
5.		Attempt any TWO of the following:	16
	a)	Oil having a sp.6 of 0.8 and an absolute viscosity of 0.08 poise flows through a 12.5 mm dia horizontal pipeline 20 m long with velocity of 50 cm/sec. Find pressure drop between two ends of the pipe.	
	b)	A liquid is flowing at the rate of 20 lit/s through a 2 cm di pipe. Density of liquid is 870 kg/m ³ . Calculate:	a

- (i) mass flow rate in kg/s
- (ii) volumetric flow rate in m³/s
- (iii) Average velocity in m/s
- (iv) mass velocity in $\frac{kg}{m^2.s}$
- c) A venturimeter is used to measure flow rate of water. Calculate the flow rate in lit/sec if mercury manometer reads 18 cm. The pipe dia is 75 mm while throat dia is 25 mm. Take Cv = 0.97.

6. Attempt any TWO of the following:

16

- a) Draw a neat diagram, name different parts and describe working of a centrifugal pump.
- b) Derive expression to find out velocity of a liquid flowing through an orifice plate fitted in a pipe line.
- c) Draw a neat diagram and explain working of any vacuum producing equipment you have studied.