Total No. of Questions: 9]

[Total No. of Pages :02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. - 2016

First Year PHYSICS

Mathematical Physics

Time: 3 Hours Maximum Marks: 70

Answer any Five questions All questions carry equal marks

- **Q1)** Obtain the series solution of Legendre polynomial.
- **Q2)** a) From generating function show that $H_{n-1}(x) + H_{n+1}(x) = \frac{2n}{x}H_n(x)$.
 - b) Evaluate the value of $J_{\pm \frac{3}{2}}(x)$ and $J_{\pm \frac{5}{2}}(x)$.
- **Q3)** a) Prove that $u = e^{-x}(x \sin y y \cos y)$ is harmonic.
 - b) Explain Cauchy's integral theorem.
- **Q4)** a) Explain Morera's theorem.
 - b) State and prove Laurent's theorem.
- **Q5)** a) Mention different types of tensors.
 - b) Prove that Kronecker delta is a mixed tensor

W-2648 P.T.O.

- **Q6)** a) Explain Quotient law of tensor.
 - b) Explain the Laplacian operator in Riemann space.
- **Q7)** a) Explain partial fraction method for inverse LT.
 - b) Find the LT of
 - i) $t^2 + at + b$ and
 - ii) $\sinh^2 2t$
- **Q8)** a) Find the fourier series for f(x) in the interval $(-\pi, \pi)$ where $f(x) = \pi + x, -\pi < x < 0$

$$= \pi - x, 0 < x < \pi$$

- b) Explain FT of delta function.
- **Q9)** Write notes on any two of the following
 - a) Prove $L_{n+1}(x) = (2n+1-x)L_n(x) nL_{n-1}(x)$
 - b) Jordon's inequality
 - c) Christoffel's symbols
 - d) LT of derivative

Total No. of Questions: 09]

[Total No. of Pages :02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016

First Year PHYSICS

Classical Mechanics and Statistical Mechanics

Time: 3 Hours Maximum Marks: 70

Answer any Five questions All questions carry equal marks

- **Q1)** a) Explain the principle of virtual work.
 - b) State and explain D'Alembert's principle.
- **Q2)** a) Obtain the Lagrange's equation from Hamilton's principle.
 - b) Explain the principle of least action.
- **Q3)** a) What are canonical transformations? Give condition for a transformation to be canonical.
 - b) Obtain canonical equations of motion in Poisson bracket netation.
- **Q4)** a) Explain Hamilton Jacobi theory.
 - b) Discuss the free vibration of a linear triatomic molecule.
- **Q5)** a) State and explain equipartition theorem.
 - b) What is Gibb's paradox? Explain.
- **Q6)** a) Define an ensemble and distinguish canonical and grand canonical ensembles.
 - b) Explain the density fluctuations in the grand canonical ensemble.
- **Q7)** a) Explain the significance of partition function in quantum statistical mechanics.
 - b) Explain variational principle.

- **Q8)** a) Explain the Theory of White dwarf.
 - b) Explain Bore Einstein condensation.
- **Q9)** Write notes on any <u>Two</u> of the following
 - a) Cyclic coordinates
 - b) Action angle variables
 - c) Postulates of quantum statistical mechanics
 - d) Darwin Fowler method

(DPHY03)

Total No. of Questions: 08]

[Total No. of Pages :02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016

First Year PHYSICS

Quantum Mechanics

Time: 3 Hours Maximum Marks: 70

Answer any Five questions All questions carry equal marks

- **Q1)** a) Explain the difference between classical mechanics and quantum mechanics.
 - b) What is wave function? Explain its physical interpretation.
- **Q2)** Obtain the solution of wave equation for a particle moving in three dimensions in a constant potential field with finite walls.
- **Q3)** a) Briefly explain the time independent perturbation theory for non degenerate systems.
 - b) Explain the variation method.
- **Q4)** a) Write a note on sudden and adiabatic approximation.
 - b) Briefly explain Generalized perturbation theory.
- **Q5)** a) Obtain the commutation relations of L, L_x , L^2 and L_z .
 - b) Explain Paulis spin matrices.
- **Q6)** a) What are CG coefficients? Explain.
 - b) Distinguish between Schrodinger's and Heisenberg's pictures.
- **Q7)** a) Obtain the free particle solution by Dirac matrices.
 - b) Write a note on probability and current densities.

Q8) Write a note on any two of the following:

- a) Uncertainty principle
- b) Stark effect in hydrogen atom
- c) Wigner Eckail Theorem
- d) Negative energy states.

Total No. of Questions: 9]

[Total No. of Pages :02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016

First Year

PHYSICS Electronics

Time: 3 Hours Maximum Marks: 70

Answer any Five questions

- **Q1)** a) Explain how op.amp can be used as inverting amplifier.
 - b) What is feedback? Explain the effect of feed back on closed loop gain.
- **Q2)** a) Explain the principle and working of phase shift oscillator with circuit diagram.
 - b) Discuss the generation of square wave by using 555 times.
- **Q3)** a) Explain the propagation of TM and TR waves in the rectangular guides.
 - b) Write a note on magic T attenuators.
- **Q4)** a) Explain the working of Faster Seeley discrimination.
 - b) Explain about ground wave and space wave propagation.
- **Q5)** a) State and prove demorgan Theorems.
 - b) Define NAND, NOR and Exclusive OR gates and give their truth tables.
- **Q6)** a) Draw a matter slave flip flop and explain its operation.
 - b) Distinguish between synchronous and asynchronous counters.
- **Q7)** a) Explain the architecture of 8085.
 - b) Write a assembly language program to add two, 8 bit numbers.

- **Q8)** a) Explain the addressing modes of 8086 with examples.
 - b) What is an instruction cycle? Explain how these cycles are calculated in execution.
- **Q9)** Write notes on any TWO of the following questions.
 - a) Weinbridge oscillator
 - b) Magnetron
 - c) D flip flops
 - d) Sample and hold circuit

