BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2016

ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA

Time : 2 hours
Maximum Marks : 50
(Weightage 70\%)
Note: Question no. 7 is compulsory. Answer any four questions from Questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Consider the real vector space $\mathbf{M}_{\mathrm{n}}(\mathbf{R})$, of all $\mathrm{n} \times \mathrm{n}$ matrices with entries from the set of real numbers with respect to the usual addition and scalar multiplication of matrices. Find the smallest subspace of $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ which contains the identity matrix. Also show that the set of all symmetric matrices is a subspace of $M_{n}(\mathbf{R})$.
(b) Show that the map: $\mathbf{T}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ given by $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}+x_{3}, 2 x_{3}+x_{1}\right)$ is a linear transformation. Find its image and the kernel.
2. (a) Show that if $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly independent vectors in a vector space V over a field K, then $u_{1}+u_{2}, u_{3}-u_{4}, u_{4}+u_{1}$ are also linearly independent.
(b) Show that the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is congruent to the identity matrix.
(c) Use the Cayley-Hamilton theorem to find the inverse of the matrix $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$.
3. (a) Consider the real vector space
$\mathrm{A}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbf{R}, 2 \mathrm{a}+3 \mathrm{~b}=\mathrm{c}+\mathrm{d}\}$. Find dim A. Also find two distinct subspaces
B_{1} and B_{2} of \mathbf{R}^{4} such that

$$
\mathrm{A} \oplus \mathrm{~B}_{1}=\mathrm{R}^{4}=\mathrm{A} \oplus \mathrm{~B}_{2} .
$$

(b) Using the Gram-Schmidt procedure, find an orthonormal basis of \mathbf{C}^{3} corresponding to the ordered basis $\{(1,1,1),(1,1,0),(i, 0,0)\}$.
4. (a) Let T be a linear operator whose matrix with respect to the standard basis is given by $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$. Obtain the matrix of T with
respect to the basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
(b) Find the orthogonal canonical form to which the following quadratic form can be reduced.
Also obtain a set of principal axes.
$\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{2} \mathrm{x}_{3}-2 \mathrm{x}_{3} \mathrm{x}_{1}$
5. (a) Find the eigenvalues and eigenvectors for the matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$. Also decide if
A is diagonalisable.
(b) Find the domain of the function f, defined by $f(x)=\frac{x}{\sqrt{5-x}}$. Check whether or not 2 is in the range of f.
(c) Give an example, with justification, of a binary operation which is not associative.
6. (a) Can Cramer's rule be used to solve the following system of equations? If yes, use the rule to solve it. If not, solve the system using the Gaussian elimination method.

$$
\begin{align*}
& 2 x+3 y+z=7 \\
& x-3=2 y-2 z \\
& 3 x-y-4+z=0 \tag{5}
\end{align*}
$$

(b) Prove that $\mathbf{C}^{4} / \mathbf{C} \simeq \mathbf{C}^{3}$.
7. Which of the following statements are True and which are False ? Justify your answer with a short proof or by a counter-example.
$5 \times 2=10$
(a) The operation $*$, defined by $x * y=\log (x y)$ is a binary operation on S, where

$$
S=\{x \in \mathbf{R} \mid x>0\} .
$$

(b) If α and β are eigenvalues of two $n \times n$ matrices A and B respectively, then $\alpha+\beta$ is an eigenvalue of $A+B$.
(c) If S and T are linear transformations such that $S o T$ is defined and is $1-1$, then S is 1-1.
(d) $T: \mathbf{R}^{3} \times \mathbf{R}^{3} \rightarrow \mathbf{R}: T\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)\right)=$

$$
\left(x_{1}+x_{2}+x_{3}\right) \cdot\left(y_{1}+y_{2}+y_{3}\right)
$$

is an inner product on \mathbf{R}^{3}.
(e) \{India, - 5, Jamila\} is a set.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2016
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित
समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का 70\%)
नोट : प्रश्न सं. 7 करना ज़रूरी है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) आव्यूहों की सामान्य जमा और अदिश गुणन के सापेक्ष वास्तविक संख्याओं के समुच्चय से प्रविष्टियों वाले सभी $\mathrm{n} \times \mathrm{n}$ आव्यूहों की वास्तविक सदिश समष्टि $\mathrm{M}_{\mathrm{n}}(\mathbf{R})$ लीजिए। $\mathrm{M}_{\mathrm{n}}(\mathbf{R})$ की ऐसी सबसे छोटी उपसमष्टि ज्ञात कीजिए जिसमें तत्समक आव्यूह हो । यह भी दिखाइए कि सभी सममित आव्यूहों का समुच्चय $\mathbf{M}_{\mathbf{n}}(\mathbf{R})$ की उपसमष्टि है ।
(ख) दिखाइए कि
$\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\left(2 \mathrm{x}_{1}+\mathrm{x}_{3}, 2 \mathrm{x}_{3}+\mathrm{x}_{1}\right)$ द्वारा दिया गया प्रतिचित्र : $\mathbf{T}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ रैखिक रूपांतरण है । इसका प्रतिबिंब और अष्टि ज्ञात कीजिए।
2. (क) दिखाइए कि यदि $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$ क्षेत्र K पर सदिश समष्टि V में रैखिकतः स्वतंत्र सदिश हैं, तब $u_{1}+u_{2}$, $\mathrm{u}_{3}-\mathrm{u}_{4}, \mathrm{u}_{4}+\mathrm{u}_{1}$ भी रैंखिकतः स्वतंत्र हैं ।
(ख) दिखाइए कि आव्यूह $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ तत्समक आव्यूह के सर्वांगसम है ।
(ग) आव्यूह $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ का प्रतिलोम ज्ञात करने के लिए कैली-हैमिल्टन प्रमेय का प्रयोग कीजिए।
3. (क) वास्तविक सदिश समष्टि
$\mathrm{A}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbf{R}, 2 \mathrm{a}+3 \mathrm{~b}=\mathrm{c}+\mathrm{d}\}$ लीजिए। $\operatorname{dim} A$ ज्ञात कीजिए। \mathbf{R}^{4} की ऐसी दो अलग-अलग उपसमष्टियाँ B_{1} और B_{2} भी ज्ञात कीजिए जिनके लिए $\mathrm{A} \oplus \mathrm{B}_{1}=\mathrm{R}^{4}=\mathrm{A} \oplus \mathrm{B}_{2}$.
(ख) ग्राम-श्मिट प्रक्रम का प्रयोग करके क्रमित आधार $\{(1,1,1),(1,1,0),(\mathrm{i}, 0,0)\}$ के संगत \mathbf{C}^{3} का प्रसामान्य लांबिक आधार ज्ञांत कीजिए।
4. (क) मान लीजिए T ऐसा रैखिक संकारक है, जिसका आव्यूह मानक आधार के सापेक्ष $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$ द्वारा दिया गया है । आधार $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ के सापेक्ष T का आव्यूह प्राप्त कीजिए।
(ख) वह लांबिक विहित समघात ज्ञात कीजिए जिससे निम्नलिखित द्विघाती समघात समानीत हो सकता है । निम्नलिखित मुख्य अक्षों का समुच्चय भी प्राप्त कीजिए :
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}-2 x_{3} x_{1}$
5. (क) आव्यूह $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ के आइगेनमान और आइगेनसदिश ज्ञात कीजिए। यह भी निर्धारित कीजिए कि A विकर्णनीय है ।
(ख) $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\sqrt{5-\mathrm{x}}}$ द्वारा परिभाषित फलन f का प्रांत ज्ञात कीजिए। यह भी ज्ञात कीजिए कि क्या $2, \mathrm{f}$ के गोचर (परिसर) में है।
(ग) पुष्टि सहित एक ऐसी द्वि-आधारी संक्रिया का उदाहरण दीजिए जो सहचारी नहीं है ।
6. (क) निम्नलिखित समीकरण निकाय को हल करने के लिए क्या क्रेमर नियम का प्रयोग किया जा सकता है ? यदि हाँ, तो इसे हल करने के लिए इस नियम का प्रयोग कीजिए। यदि नहीं, तो गाउसीय निराकरण विधि से निकाय को हल कीजिए।

$$
\begin{align*}
& 2 x+3 y+z=7 \\
& x-3=2 y-2 z \\
& 3 x-y-4+z=0 \tag{5}
\end{align*}
$$

(ख) सिद्ध कीजिए कि $\mathbf{C}^{4} / \mathbf{C} \simeq \mathbf{C}^{3}$.
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य? लघु उपपत्ति या प्रति-उदाहरण के साथ अपने उत्तर की पुष्टि कीजिए। $5 \times 2=10$
(क) $\mathrm{x} * \mathrm{y}=\log (\mathrm{xy})$ द्वारा परिभाषित संक्रिया $*, \mathrm{~S}$ पर द्वि-आधारी संक्रिया है, जहाँ $\mathrm{S}=\{\mathrm{x} \in \mathbf{R} \mid \mathrm{x}>0\}$.
(ख) यदि α और β दो $n \times n$ आव्यूहों क्रमशः A और B के आइगेनमान हैं, तब $\alpha+\beta, A+B$ का आइगेनमान है।
(ग) यदि S और T ऐसे रैखिक रूपांतरण हैं जिनके लिए SoT परिभाषित है और $1-1$ है, तब $\mathrm{S}, 1-1$ होगा ।
(घ) $\mathrm{T}: \mathbf{R}^{3} \times \mathbf{R}^{3} \rightarrow \mathbf{R}: \mathrm{T}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)\right)=$ $\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right) \cdot\left(\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}\right)$
\mathbf{R}^{3} पर आंतरिक गुणनफल है ।
(ङ) \{India, -5, Jamila\} एक समुच्चय है ।

