BACHELOR'S DEGREE PROGRAMME (BDP)

TI Term-End Examination
 December, 2016
 ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Attempt five questions in all. Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let $\mathbf{R}[\mathrm{x}]$ denote the set of all polynomials in x with real coefficients. On $R[x]$, define a relation \sim by $f(x) \sim g(x)$ if $f^{\prime}(x)=g^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of $f(x)$. Show that \sim is an equivalence relation on $\mathbf{R}[x]$. For any $\mathrm{f}(\mathrm{x}) \in \mathbf{R}[\mathrm{x}]$, determine the equivalence class [$f(x)]$.
(b) Let $\mathrm{G}=\mathrm{GL}(2, \mathbf{R})$ be the group of 2×2 invertible matrices over \mathbf{R} (with respect to multiplication) and let
$H=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a\right.$ and b are non-zero rational numbers $\}$.
Is H an abelian subgroup of G? Justify your answer.
(c) Show that $\mathrm{x}^{2}+\mathrm{x}+4$ is irreducible over $\mathrm{Z}_{11} \cdot 4$
2. (a) Let $A=R \backslash\{1], B=R \backslash\{2\}$ and $f: A \rightarrow B$ and $g: B \rightarrow A$ be defined by $f(x)=\frac{2 x}{x-1}$ and $g(x)=\frac{x}{x-2}$. Check whether f and g are functions. Compute gof. Are f and g invertible functions? Justify your answer.
(b) Is the ideal generated by $\mathrm{x}^{2}+1$ in $\mathrm{Z}_{2}[\mathrm{x}]$ a prime ideal of $\mathbf{Z}_{2}[\mathbf{x}]$? Give reasons for your answer.
(c) Let $\mathrm{f}: \mathbf{Z}_{5} \rightarrow \mathbf{Z}_{10}$ be given by $f(x)=5 x, \forall x \in \mathbf{Z}_{5}$. Is f a homomorphism of groups? Justify your answer.
3. (a) Let $S=\left\{\left.\left[\begin{array}{ll}a & a \\ \mathbf{a} & \mathbf{a}\end{array}\right] \right\rvert\, a \in \mathbf{R}\right\}$. Check whether S is a ring with identity.
(b) If G is a finite abelian group of odd order, prove that the product of all elements in G is equal to the identity element of G.
(c) Is the ring 2 Z isomorphic to the ring 3 Z ? Justify your answer.
4. (a) If H is a subgroup of G of index 2 , prove that H is normal in G .
(b) Let $\beta \in S_{7}$ and suppose $\beta^{4}=(2143567)$. Find β.
(c) Give with justification two factorizations of 46 as a product of irreducible elements in $\mathbf{Z}[\sqrt{-5}]$.
5. (a) Let R be a PID and I be an ideal of R. Is the quotient ring R / I a PID? Give reasons for your answer.
(b) Prove that every group of order 63 has a proper non-trivial subgroup.
(c) Let I be an ideal of a ring R. Define $[R: I]=\{x \in R \mid r x \in I$ for all $r \in R\}$
Prove that:
(i) $[R: I]$ is an ideal of R.
(ii) $\mathrm{I} \subseteq[\mathrm{R}: \mathrm{I}]$.
6. (a) Consider the ring $S=\mathbf{R}[x] /\left\langle x^{2}-3 x+2\right\rangle$.
(i) Give two distinct elements of S with justification.
(ii) Does S have zero divisors? Justify your answer.
(b) Let (\mathbf{C}^{*}, \cdot) denote the group of non-zero complex numbers and
$S=\left\{z \in C^{*}| | z \mid=1\right\}$. Show that $\mathbf{C}^{*} / \mathbf{S} \simeq \mathbf{R}^{+}$where (\mathbf{R}^{+}, \cdot) is the group of positive real numbers.
(c) Give an example of an infinite field of characteristic $p \neq 0$, where p is a prime.
7. Which of the following statements are true and which are false ? Give reasons for your answers.
(a) There exists a non-cyclic group in which every proper subgroup is cyclic.
(b) In a commutative ring, every prime ideal is maximal.
(c) Any group of order ≤ 3 is abelian.
(d) The field of complex numbers \mathbf{C} contains a subfield with finite number of elements.
(e) There exists a field with 99 elements.

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर, 2016

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-06 : अमूर्त बीजगणित

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट: कुल पाँच प्रश्न कीजिए । प्रश्न सं. 7 करना अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए $\mathbf{R}[x], x$ में वास्तविक गुणांकों वाले सभी बहुपदों के समुच्चय को निरूपित करता है। $\mathbf{R}[\mathrm{x}]$ पर, संबंध \sim इस प्रकार परिभाषित कीजिए कि $f(x) \sim g(x)$ यदि $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})$, जहाँ $\mathrm{f}^{\prime}(\mathrm{x}), \mathrm{f}(\mathrm{x})$ का अवकलज है । दिखाइए कि $\sim, \mathbf{R}[\mathbf{x}]$ पर एक तुल्यता-संबंध है। किसी भी $\mathrm{f}(\mathrm{x}) \in \mathbf{R}[\mathrm{x}]$ के लिए, तुल्यता-वर्ग $[\mathrm{f}(\mathrm{x})]$ निर्धारित कीजिए।
(ख) मान लीजिए $\mathrm{G}=\mathrm{GL}(2, \mathbf{R})$ (गुणन के सापेक्ष) \mathbf{R} पर 2×2 व्युत्क्रमणीय आव्यूहों का समूह है और मान लीजिए

$$
\mathrm{H}=\left\{\left.\left(\begin{array}{ll}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right) \right\rvert\, \mathrm{a} \text { और } \mathrm{b} \text { शून्येतर परिमेय संख्याएँ हैं }\right\} .
$$

क्या H, G का आबेली उपसमूह है ? अपने उत्तर की पुष्टि कीजिए।
(ग) दिखाइए कि $\mathrm{x}^{2}+\mathrm{x}+4, \mathrm{Z}_{11}$ पर अखंडनीय है ।
2. (क) मान लीजिए $\mathbf{A}=\mathbf{R} \backslash\{1\}, \mathrm{B}=\mathbf{R} \backslash\{2\}$ और $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ और $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}, \mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}}{\mathrm{x}-1}$ और $g(x)=\frac{x}{x-2}$ द्वारा परिभाषित हैं । जाँच कीजिए कि f और g फलन हैं या नहीं। gof परिकलित कीजिए । क्या f और g व्युत्क्रमणीय फलन हैं ? अपने उत्तर की पुष्टि कीजिए।
(ख) $\mathbf{Z}_{2}[\mathrm{x}]$ में $\mathrm{x}^{2}+1$ द्वारा जनित गुणजावली क्या $\mathrm{Z}_{2}[\mathrm{x}]$ की अभाज्य गुणजावली है ? अपने उत्तर के कारण बताइए।
(ग) मान लीजिए $f: \mathbf{Z}_{5} \rightarrow \mathbf{Z}_{10}, f(x)=5 x, \forall \mathbf{x} \in \mathbf{Z}_{5}$ द्वारा दिए गए हैं । क्या f समूहों की समांकारिता है ? अपने उत्तर की पुष्टि कीजिए।
3. (क) मान लीजिए $\mathrm{S}=\left\{\left.\left[\begin{array}{ll}\mathrm{a} & \mathrm{a} \\ \mathrm{a} & \mathrm{a}\end{array}\right] \right\rvert\, \mathbf{a} \in \mathbf{R}\right\}$. जाँच कीजिए कि S तत्समकी वलय है या नहीं।
(ख) यदि G विषम कोटि का परिमित आबेली समूह है, तब सिद्ध कीजिए कि G के सभी अवयवों का गुणनफल G के तत्समक अवयव के बराबर है ।
(ग) क्या वलय $2 Z$ वलय $3 Z$ के तुल्याकारी है ? अपने उत्तर की पुष्टि कीजिए।
4. (क) यदि H सूचकांक 2 के G का उपसमूह है, तब सिद्ध कीजिए कि H, G में प्रसामान्य है ।
(ख) मान लीजिए $\beta \in \mathrm{S}_{7}$ और मान लीजिए
$\beta^{4}=(2143567)$. तब β ज्ञात कीजिए ।
(ग) $\mathrm{Z}[\sqrt{-5}]$ में पुष्टि सहित अखंडनीय अवयवों के गुणनफल के रूप में 46 के दो अलग-अलग गुणनखंड दीजिए।
5. (क) मान लीजिए R एक PID है और I, R की गुणजावली है । क्या विभाग वलय R / I एक PID है ? अपने उत्तर के कारण बताइए।
(ख) सिद्ध कीजिए कि कोटि 63 वाले प्रत्येक समूह का एक उचित प्रसामान्य अतुच्छ उपसमूह होता है ।
(ग) मान लीजिए I , वलय R की एक गुणजावली है । निम्नलिखित को परिभाषित कीजिए :
$[R: I]=\{x \in R \mid$ सभी $r \in R$ के लिए $r x \in I\}$
सिद्ध कीजिए कि :
(i) $[\mathrm{R}: \mathrm{I}], \mathrm{R}$ की एक गुणजावली है ।
(ii) $\mathrm{I} \subseteq[\mathrm{R}: \mathrm{I}]$. 4
6. (क) वलय $\mathbf{S}=\mathbf{R}[\mathrm{x}] /\left\langle\mathbf{x}^{2}-3 \mathbf{x}+2\right\rangle$ लीजिए ।
(i) पुष्टि सहित S के दो अलग-अलग अवयव दीजिए।
(ii) क्या S के शून्य विभाजक होते हैं ? अपने उत्तर की पुष्टि कीजिए।
(ख) मान लीजिए $\left(\mathbf{C}^{*}, \cdot\right)$ शून्येतर सम्मिश्र संख्याओं के समूह को निरूपित करता है और $S=\left\{z \in C^{*}| | z \mid=1\right\}$. दिखाइए कि $\mathbf{C}^{*} / \mathbf{S} \simeq \mathbf{R}^{+}$जहाँ $\left(\mathbf{R}^{+}, \cdot\right)$ धनात्मक वास्तविक संख्याओं का समूह है ।
(ग) अभिलक्षणिक $\mathrm{p} \neq 0$ के अपरिमित क्षेत्र का एक उदाहरण दीजिए, जहाँ p अभाज्य है।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य हैं । अपने उत्तरों के कारण बताइए। $5 \times 2=10$
(क) एक ऐसे अचक्रीय समूह का अस्तित्व होता है जिसमें प्रत्येक उचित उपसमूह चक्रीय होता है ।
(ख) क्रमविनिमेय वलय में, प्रत्येक अभाज्य गुणजावली उच्चिष्ठ है।
(ग) कोटि ≤ 3 का कोई भी समूह आबेली है।
(घ) सम्मिश्र संख्याओं के क्षेत्र \mathbf{C} में अवयवों के परिमित संख्या वाला उपक्षेत्र होता है।
(ङ) 99 अवयवों वाले एक क्षेत्र का अस्तित्व होता है।

