Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V • EXAMINATION - WINTER 2016

		bject Code: 151002 Date: 19/11/2016 bject Name: Engineering Electromagnetics	
	Ti	me: 10:30AM – 01:00PM Total Marks: 70 tructions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Given two points , $M(2,5,-3)$ and $N(-3,1,4)$: (i) Find their separation (ii) find the distance from the origin to the midpoint of the line MN (iii) Find a unit vector in the direction of R _{MN} .	07
	(b)	(i) Find \mathbf{a}_x in spherical components at P (3,-4, 5). (ii) Find \mathbf{a}_{θ} in Cartesian components at P(3,-4,5).	07
Q.2	(a)	Evaluate both sides of the divergence theorem for the field $\mathbf{D} = 2xy \mathbf{a}_x + x^2 \mathbf{a}_y C/m^2$ and the rectangular parallelepiped formed by the planes $x = 0$ and 1, $y = 0$ and 2, and $z = 0$ and 3.	07
	(b)	Using Gauss's law, explain the concept of divergence. Prove Divergence Theorem and obtain Maxwell's first equation	07
	(b)	OR Derive the expression for the electric field E due to infinite sheet of charge having a uniform density of $\rho_S C/m^2$.	07
Q.3	(a) (b)	Write Maxwell's equations in point form and explain physical significance of equations. Assuming the potential function V varies as a function of ρ in cylindrical coordinates systems, obtain the solution of Laplace equation and deduce the value of capacitance of a coaxial capacitor. OR	07 07
Q.3	(a)	Explain uniqueness theorem in brief. Also derive the expression of E if boundary conditions for two radial planes are given by $V = 0$ at $\Phi = 0$ and $V = V_0$ at $\Phi = \alpha$.	07
0.4	(b)	Write a detailed note on potential gradient.	07 07
Q.4	(a)	An infinitely long coaxial cable is carrying current I by the inner conductor of radius 'a' and $-I$ by the outer conductor of radii 'b' and 'c'. Where c>b.	07
	(b)	Deduce the expressions for H at (i) $\rho < a$ (ii) $a < \rho < b$ (iii) $b < \rho < c$ (iv) $\rho > c$. Define magnetic flux & magnetic field intensity. Also explain Magnetic boundary conditions in brief.	07
Q.4	(a)	OR Let $\mu = \mu_1 = 4 \mu H/m$ in region 1 where z>0, while $\mu_2 = 7 \mu H/m$ wherever z<0. Moreover, let	07
Q. -	(u)	\mathbf{K} =80 \mathbf{a}_x A/m on the surface z=0. In region 1, the magnetic flux density is $\mathbf{B}_1 = 2 \mathbf{a}_x - 3 \mathbf{a}_y + \mathbf{a}_z$ mT. Find \mathbf{B}_2	07
	(b)	State and prove Poynting theorem relating to the flow of energy at a point in space in an electromagnetic field.	07
Q.5	(a)	Prove that for a differential current loop which carries current I in a given magnetic field, the torque on that loop is given by $d\mathbf{T} = d\mathbf{m} \times \mathbf{B}$	07
	(b)	Define the term "curl". Also explain the point form of "Ampere's circuital law". OR	07
Q.5	(a)	Write Short note on the followings. 1) Skin effect	07
	(b)	2) The retarded potentials An E field in free space is given as $\mathbf{E} = 800 \cos(10^8 t - \beta y) \mathbf{a}_z \text{ V/m. find (i)}\beta$ (ii) λ (iii) H at P(0.1, 1.5, 0.4) at t = 8 ns.	07
