Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(New) • EXAMINATION - WINTER 2016

Subject Code:2150103

Subject Name: Aircraft Structures II Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Short Questions Q.1

- Define load factor. 1
- 2 Give two examples of structural components in the wing and fuselage of an aircraft which take bending.
- Distinguish between torsion and bending moment. 3
- 4 Give a realistic example of any situation in which torsion is experienced by any component of an aircraft.
- List and explain the types of fuselage. 5
- Explain Redundancy. 6
- 7 Discuss types of load coming on aircraft.
- 8 Explain the significance role of an I-section in structures.
- 9 Discuss the importance of neutral axis
- Why is the wing of an aircraft selected to be cantilever? 10
- Why is the cross section of a fuselage circular/elliptical? 11
- 12 Discuss statically determinate structures
- 13 Why are thin walled sections preferred over solid sections?
- Draw stress strain diagrams for brittle and elastic materials. 14
- Q.2 **(a)** State the difference between Symmetrical Bending and Unsymmetrical 03 Bending.
 - Explain with neat sketch the state of stress at a point in three dimensions. 04 **(b)**
 - Explain the State of Plane Strain. Write the basic equations of (c) 07 equilibrium, compatibility and stress-strain relations for plane strain condition in polar coordinate system.

OR

- 07 The state of stress at point is given by $\sigma_x = 20$, $\sigma_y = -10$, $\sigma_z = 7$ MPa and (c) τ_{xy} = -6, τ_{yz} = 8, τ_{zx} = 10 MPa, Determine the principal stresses and principal directions.
- **Q.3** Define Stiffness and state the characteristics of Stiffness Matrix. 03 (a)
 - Enlist the basic equations of equilibrium, compatibility and stress-strain **(b)** 04 relations for plane stress condition in polar coordinate system
 - Find the reactions for the beam shown in Figure-1 using Displacement 07 (c) Method. Assume that the beam has constant flexural rigidity EI.

OR

- Explain the State of Plane Stress 0.3 **(a)**
 - Prove that'Stiffness matrix andFlexibility matrix are inverse to one **(b)** 04 another'.
 - Determine the value of the redundants for the beam shown in the Figure-07 (c) 2 using Flexibility Method. Consider redundants in the form of moments. 03
- Define the terms: Shear Centre and Shear Flow **Q.4 (a)**
 - Explain Framed Structures and Continuum Structures with the help of 04 **(b)** neat sketch.

03

MARKS

14

Date:19/11/2016

Total Marks: 70

(c) An Indian Standard I-section ISMB 300 is shown in Figure- 3. The properties of the section are as below: Ixx = 7719 cm⁴, Iyy = 456 cm⁴. The plane of loading is inclined at 30° to the Y-axis. Find moment 'M' if the maximum bending stress induced is 120 N/mm².

OR

		Ŭ K	
Q.4	(a)	Define: Principal Moment of Inertia	03
	(b)	Determine the stress fields that arises from the following stress function:	04
		(i) $\Phi = Cy^4$	
		(ii) $\Phi = Ax^2 + Bxy + Cy^3$	
		(iii) $\Phi = Ax^3 + Bx^2y + Cxy^2 + Dy^3$	
	(c)	Determine the position of the shear centre for the thin-walled open	07
		section shown in Figure-4. Moment of Inertia of the section $I_u = 1070$ x	
		10^6 mm^4 .	
Q.5	(a)	Explain the role of skin and ribs in detail.	03
	(b)	Discuss the difference between torsion of open and closed sections	04
	(c)	Explain V-N diagram in detail along with a neat sketch and all the	07
	(-)	critical points of concern	-
		OR	
Q.5	(a)	Explain the role of bulkheads and longerons in detail.	03
	(b)	Explain displacement associated with Bredt-Batho Shear flow for closed	04
		sections.	
	(c)	Explain Prandtl's torsion theory for solid sections	07
	(-)		0.

Figure-2

Figure-3

Figure-4
