CS-64

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

December, 2016

CS-64 : INTRODUCTION TO COMPUTER ORGANISATION

Time : 3 hours

Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

- 1. (a) Find the even and odd parity bits for the following 7-bit data :
 - (i) 1010111
 - (ii) 0101101
 - (iii) 1111111
 - (iv) 1010101
 - (b) Explain three Displacement Addressing mechanisms with the help of examples.
 - (c) Simplify the following function using K-map:

 $F(A, B, C, D) = \sum (2, 6, 10, 14)$

Draw the resultant logic diagram.

6

4

CS-64

P.T.O.

7

(d) Write a program in 8086 Assembly language that converts a lowercase string stored in an array to an uppercase string.

7

6

7

8

7

4

- (e) Perform the following conversions :
 - (i) (569)₁₀ to Binary number
 - (ii) $(10110101)_2$ to Octal number
 - (iii) (5AF)₁₆ to Decimal number
 - (iv) (545)₈ to Hexadecimal number
 - (v) $(6B \cdot 28)_{16}$ to Binary number
 - (vi) $(23.125)_{10}$ to Hexadecimal number
- 2. (a) What are micro-operations ? Describe any two types of micro-operations.
 - (b) What are microinstructions ? Describe the horizontal and vertical microinstruction formats with the help of a diagram.
- 3. (a) What are flip-flops ? Describe the construction of a master-slave flip-flop using R-S flip-flops.
 - (b) Explain the use of Code Segment (CS) and Data Segment (DS) registers in 8086 microprocessor with the help of examples.

CS-64

2

- (c) What are the various fields of a simple instruction ? Explain with the help of a diagram.
- 4. (a) Describe the FAR and NEAR Procedures in 8086 Assembly.
 - (b) What is an interrupt ? Explain the processing of an interrupt in 8086 microprocessor with the help of a diagram.
 - (c) Explain the logic diagram of a 3×8 Decoder.

5

15

6

4

4

- 5. Explain the following with the help of suitable examples/diagrams :
 - (a) XCHG Instruction in 8086 Microprocessor
 - (b) Representation of Floating Point Number
 - (c) I/O Processor
 - (d) Cache Memory
 - (e) Logical Layout of Magnetic Disk