# DIPLOMA IN CIVIL ENGINEERING DCLE(G) / DCLEVI 

Term-End Examination
December, 2016

## BCE-045: CONSTRUCTION DRAWING

Time : 2 hours $\quad$ Maximum Marks : 70

Note: Part A is to be attempted on answer script and Part $B$ on drawing sheet. Use of calculator is allowed.

## PART A

Aftempt any five questions.

1. Explain the terms ultimate bearing capacity and
allowable bearing capacity.
2. Define various technical terms used in an arch with neat sketch.7
3. Discuss how the depth and width of a shallow
foundation are designed. ..... 7
4. Sketch a dog-legged staircase. Explain its
architectural aspects. ..... 7
5. What do you mean by abbreviation? Discuss any seven. ..... 7
6. Draw a neat sketch of a king past truss. Explain the various terms used. ..... 7
7. Write the specifications of marble flooring. ..... 7
BCE-045

## PART B

Attempt question no. 8 which is compulsory and any one question from the remaining. Assume a suitable scale and mention it.
8. Draw the sectional elevation of a strip footing for an external concrete wall of thickness 250 mm . The footing is provided at a depth of 2 m below ground level. Plinth level is 0.5 m above G.L. Design data is as follows :15

Width of footing $=2.5 \mathrm{~m}$
Overall depth of footing $=500 \mathrm{~mm}$
Depth of footing at edges $=200 \mathrm{~mm}$
Steel in tension $=12 \phi$ @ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Distribution steel $=10 \phi$ @ 200 mm c/c
9. A doubly reinforced T-beam is designed for the effective span of 5 m . Draw the cross-section of the beam. The data is as follows :

- Overall depth of beam $=500 \mathrm{~mm}$
- Width of beam $=250 \mathrm{~mm}$
- Depth of flange $=150 \mathrm{~mm}$
- Tension reinforcement $=4-20 \phi$
- Compression reinforcement $=4-12 \phi$
- Shear reinforcement $=8 \phi$ 2-legged stirrups @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

10. Draw the sectional plan and elevation of the window with the following specifications:20

Doubled leaf fully glazed wooden window for a hostel room of size $1.20 \mathrm{~m} \times 1.50 \mathrm{~m}$

