VIII Semester B.E. (Civil Engineering) Degree Examination, December 2016

(2K11 Scheme)

CE-801 : FUNDAMENTALS OF EARTHQUAKE ENGINEERING

Time : 3 Hours

Instructions : i) IS-1893 and IS 13920 codes are allowed.

- *ii) Assume any missing data suitably.*
- iii) Answer any five full questions.
- 1. Write short notes for the following :
 - i) Free and forced vibrations.
 - ii) Single and multi degrees of freedom.
 - iii) Natural frequency and resonance.
 - iv) P-waves and S-waves.
- 2. a) Obtain the differential equation for undamped free vibration.
 - b) Determine the frequency of the bridge with 10T lorry stationed at mid span. The bridge itself may be considered as a simply supported beam of uniform section having a total weight of 200T. From a static analysis of the bridge it was found that the deflection at mid span due to a force of 1.0 kN applied at mid span is 1.5 mm.
- 3. a) Explain D'Alembert's principle.
 - b) Define logarithmic decrement and derive an expression for the same. **10**
- 4. a) Explain under damped, over damped and critically damped system. **12**
 - b) A machine of weight 20 kN is mounted at the centre of a simply supported steel beam of span 3 m. A piston which moves up and down in the machine produces a harmonic force of amplitude 31 kN and frequency 60 rad/sec. Neglecting the height of the beam and assuming 10% of critically damping. Determine :
 - i) The amplitude of the motion of machine.
 - ii) Force transmitted to the beam supports $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 5 \times 10^7 \text{ mm}^4$.

Max. Marks: 100

BE – 047

(4×5=20)

10

8

P.T.O.

10

BE-047	
5. Explain plan and vertical irregularities with neat diagrams.	20
Explain the detailing for footing, column and beam as per IS 13920-1993 with neat diagrams.	20
 7. Calculate the design lateral force for each storey with the following data : i) No. of storeys – 8 ii) Height of each storeys = 3 m iii) Type of building – SMRF, RC structure iv) Load of each floor – 3000 kN v) Hospital building vi) Hard soil 	20
 vii) No. of bays – 3 viii) Each bay width – 4 m ix) Location – New Delhi. 8. Plot the response spectrum curve for the following data. i) Zone 2 and zone 5. ii) Residential building. iii) Medium soil. iv) OMRF, RC structure. 	20