DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) /

 DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVITerm-End Examination
December, 2016

BET-022(S) : STRENGTH OF MATERIALS

Time: 2 hours
Maximum Marks : 70
Note: Attempt five questions in all. Question no. 1 is compulsory. Assume missing data suitably. Use of scientific calculator is permitted.

1. Answer all the questions :
(a) Define stress and differentiate between stress and pressure.
(b) Derive the relation between E, G and v .
(c) Define section modulus.
(d) Explain shear force.
(e) Define Poisson's ratio.
(f) Explain polar moment of inertia.
(g) Differentiate between strut and column.
2. Explain the stress - strain curve for a ductile material with a neat sketch. A steel bar is subjected to a load of 80 kN . The diameter of the bar is 16 mm and its length is 320 mm . Calculate the elongation if modulus of elasticity is $196 \mathrm{kN} / \mathrm{mm}^{2}$. Calculate the change in diameter if Poisson's ratio is $\mathbf{0 . 2 8}$.
3. Draw the shear force and bending moment diagram of the beam loaded as shown in Figure 1.14

Figure 1
4. What are the assumptions made for the bending equation? Also derive the bending equation for a cantilever.
5. A hollow rectangular beam, 50 mm deep and 200 mm wide and wall thickness of 5 mm , is simply supported over a span of 6 m . Determine the maximum bending stress in the beam with a uniformly distributed load of $11 \mathrm{kN} / \mathrm{m}$. 14
6. In an elastic material, at a certain point on planes at right angles to one another, direct stresses of $120 \mathrm{MPa}(\mathrm{T})$ and $100 \mathrm{MPa}(\mathrm{C})$ are acting. The major principal stress in the material is to be limited to 160 MPa . Find the shear stress, minimum principal stress and maximum shear stress. 14
7. Write short notes on the following : 14
(a) Rankine-Gordon Formula
(b) Middle Quarter Rule

