B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)

Term-End Examination

December, 2016

BME-001 : ENGINEERING MATHEMATICS-I

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of scientific calculator is allowed. Statistical tables are allowed.

1. Attempt any five of the following : $5 \times 4=20$
(a) Evaluate the limit $\lim _{x \rightarrow-3} \frac{x^{3}-27}{x+3}$.
(b) Find $\frac{d y}{d x}$, if $y=(\sin x)^{x}$.
(c) Evaluate $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$.
(d) Use Cauchy's theorem to show that $1+\mathrm{x}<\mathrm{e}^{\mathrm{x}}$.
(e) If $u=x+y+z, y+z=u v, z=u v w$, find

$$
\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathrm{u}, \mathrm{v}, \mathrm{w})}
$$

(f) Solve the differential equation

$$
(1-\sin x \tan y) d x+\left(\cos x \sec x^{2}\right) d y=0 .
$$

2. Attempt any four of the following:
(a) The position vector of a moving particle is given by $\vec{r}(t)=t^{3} \hat{i}+t \hat{j}+t^{2} \hat{k}$. Determine the velocity and acceleration of the particle in the direction of the motion.
(b) Find the directional derivative of $f(x, y, z)=x y^{2}+4 x y z+z^{2}$ at the point $(1,2,3)$ in the direction of $3 \hat{i}+4 \hat{j}-5 \hat{k}$.
(c) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, then prove that $\operatorname{div}\left(\frac{\vec{r}}{\mathbf{r}^{3}}\right)=0$.
(d) Show that the vector field $\overrightarrow{\mathbf{F}}=x y \hat{i}+y z \hat{j}+z x \hat{k}$ is irrotational as well as solenoidal.
(e) Evaluate the surface integral $\iint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=z^{2} \hat{i}+x y \hat{j}-y^{2} \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=36,0 \leq z \leq 4$ included in the first octant.
(f)
Verify Stokes' theorem for
$\vec{A}=x z \hat{i}-y \hat{j}+x^{2} y \hat{k}$, where S is the
surface of the region bounded by $x=0$,
$y=0, z=0,2 x+y+2 z=8$ which is not
included in the $x y$-plane.
3. Attempt any five of the following :
$5 \times 3=15$
(a) Find the adjoint of the matrix

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
4 & 3 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

(b) Find the inverse of the matrix by elementary transformations.

$$
A=\left[\begin{array}{rrr}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

(c) Find the rank of the matrix

$$
\left[\begin{array}{rrr}
1 & 3 & 5 \\
2 & -1 & 4 \\
-2 & 8 & 2
\end{array}\right]
$$

(d) Solve the following equations by matrix method :
$x+y-z=0 ; 2 x-y+z=3 ; 4 x+2 y-2 z=2$.
(e) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(f) Using the properties of determinants, prove that

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2}
\end{array}\right|=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)
$$

4. Answer any three of the following :
(a) If the events A and B are independent and $P(A)=0.15, P(A \cup B)=0.45$, then find $\mathbf{P}(\mathbf{B})$.
(b) If a machine is set up correctly, it produces 90% good items; if it is incorrectly set up, then it produces 10% good items. Chances for a setting to be correct and incorrect are in the ratio of $7: 3$. After a setting is made, the first two items produced are found to be good items. What is the chance that the setting was correct?
(c) The probability that a man aged 60 will live to be 70 is 0.65 . What is the probability that out of 10 men, now 60, at least 7 will live to be 70 ?
(d) Ten individuals are chosen at random from the population and their heights are found to be $63,63,64,65,66,69,69,70,70,71$ inches respectively. Discuss the suggestion that the mean height in the universe is 65 inches given that for 9 degrees of freedom the value of student's ' t ' at 0.5 level of significance is $\mathbf{2 . 2 6 2}$.
(e). There are 1000 students in a college out of 20000 students in the whole university. In a study, 200 were found smokers in the college and 1000 in the university. Is there a significant difference between the proportion of smokers in the college and in the university?
