CS-60 (S)

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2007

CS-60 (S) : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours

Maximum Marks : 75

- **Note :** Question No. 1 is **compulsory**. Attempt any **two** questions from Questions No. 2 to 5. Calculators are not allowed.
- 1. (a) Evaluate the following determinant without expansion

1	2	3
3	5	7
8	14	20

- (b) Examine whether $f(x) = x \frac{a^x + 1}{a^x 1}$ is even or odd.
- (c) Is the function f(x) = |x| differentiable at x = 0?
- (d) Prove that $f(x) = \frac{\sin x}{x}$ is a decreasing function in the range $0 < x < \pi/2$.

CS-60 (S)

- (e) Fill in the blanks with reference to the polar equation $r = f(\theta)$ of a curve :
 - (i) If the equation remains unchanged when θ is replaced by _____, then the curve is symmetric with respect to the initial line.
 - (ii) If the equation does not change when r is replaced by - r, then the curve is symmetric about the _____.
 - (iii) If the equation does not change when θ is replaced by $\pi \theta$, then the curve is symmetric with respect to the line _____.

(f) Evaluate :

$$\int \frac{e^{x}(1+x)}{\sin^{2}(xe^{x})} dx$$

- (g) If the sets A and B are defined as $A = \{2, 5\}$ and $B = \{2, 3\}$; find $A \times B$, $B \times A$, $A \times A$.
- (h) Prove that : (b + c) (c + a) (a + b) > 8 abc if a > 0, b > 0, c > 0.
- (i) Find the direction cosines of the y-axis.
- (j) Show that the intersection with any plane parallel to the xy-plane of the paraboloid

 $x^2 + 2y^2 = 3z$

is an ellipse.

 $4\frac{1}{2} \times 10 = 45$

 (a) Find the equation to the pair of lines through the origin which are perpendicular to the lines represented by

$$ax^2 + 2hxy + by^2 = 0.$$

(b) If
$$y = \tan^{-1} \frac{1}{x^2 + x + 1} + \tan^{-1} \frac{1}{x^2 + 3x + 3} + \tan^{-1} \frac{1}{x^2 + 3x + 3} + \frac{1}{x^2 + 5x + 7} + \dots$$
 upto n terms,

then prove that

$$\frac{dy}{dx} = \frac{1}{(x+n)^2 + 1} - \frac{1}{x^2 + 1}$$

(c)

3.

E

1

If α , β , γ are the roots of the cubic equation

 $x^{3} - px^{2} + qx - r = 0$ find the value of $\sum \alpha^{2} \beta \gamma$.

5+6+4=15

(a) If a focal chord of the parabola $y^2 = 4ax$ meets the curve at A $(at_1^2, 2at_1)$ and B $(at_2^2, 2at_2)$ then show that $t_1t_2 = -1$. Hence, show that if S is the focus of the parabola, then

$$\frac{1}{SA} + \frac{1}{SB} = a \text{ constant}$$

P.T.O.

(b) If
$$I_n = \int_0^{\pi/4} \tan^n \theta \, d\theta$$
,
then $I_n = \frac{1}{n-1} - I_{n-2}$.
Hence, find the value of $\int_0^{\pi/4} \tan^4 \theta \, d\theta$.

x - 1 = y - 2 = z + 1lies entirely on the surface

 $xy - z^2 - 2x - y - 2z + 1 = 0$ 5+5+5=15

- 4. (a) Find the image of the point (-3, 8, 4) on the plane 6x 3y 2z + 1 = 0.
 - (b) If a point z moves on the Argand plane such that $\frac{z-i}{z-1}$ is always purely imaginary, then prove that the locus of z is a circle with centre at $\frac{1}{2}(1 + i)$ and radius $\frac{1}{\sqrt{2}}$.
 - (c) Prove that the condition for ax + by + 1 = 0 to touch

 $x^{2} + y^{2} + 2gx + 2fy + c = 0$ is (ag + bf - 1)² = (a² + b²) (g² + f² - c) 5+5+5=15

27 E .

CS-60 (S)

4

- **5.** (a) Find the equation of the right circular cone which contains the three positive co-ordinate axes.
 - (b) Show that

$$\sqrt{1} + \sqrt{2} + ... + \sqrt{n} \le n \sqrt{\frac{n+1}{2}}$$

CS-60 (S)

10,000

8

7

