B3 JUN ZUUS

B.E. Sem. VI (Old) (CE)

June - 2009

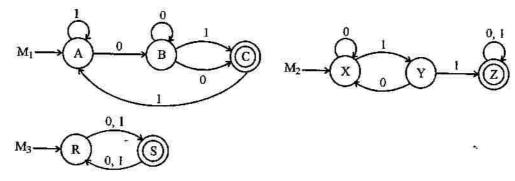
Theory of Computation

Time: 3 Hours]

[Max. Marks: 100

Instruction: Attempt any five questions.

1. Do as directed:


20

- (i) Answer the following questions:
 - (a) List the elements of $2^{2(0, 1)}$
 - (b) Describe infinite set {10, 1100, 111000, 11110000, ...} using a formula that does not involve "...".
- (ii) Prove that integer bigger than 2 have prime factorization.
- (iii) Define the following terms:
 - (a) Properties of an equivalence relation.
 - (b) The principle of mathematical induction.
 - (c) Distinguishable strings with respect to L.
 - (d) A-closure of a set of states.
- (iv) Prove that $L = \{ ss / s \in \{a, b\}^* \text{ is not CFL using pumping lemma.} \}$
- (v) Give a regular expression corresponding to the given languages.
 - (a) The language of all strings containing no more than one occurrence of the string, where L∈ {0, 1}*
 - (b) $\Lambda \in L$; if $x \in L$, then 001x and x11 are elements of L; nothing is in L unless it can be obtained from these two statements.

Do as directed (Attempt any four):

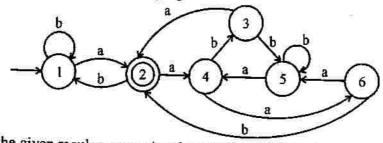
20

(i) Let m₁, m₂ and m₃ be the FAs shown in figures, recognizing languages L₁, L₂ and L₃, respectively

Draw FAs recognizing the following languages:

- (a) $L_3 L_2$
- (b) $L_1 \cap L_3$

- (ii) Prove that any regular language can be accepted by a finite automation.
- (iii) Prove that ((...(a)...)) is not regular using pumping lemma.
- (iv) Draw and describe Turring Machine for deleting a symbol.


3. Do as directed:

20

For the given CFG, find a CFG G' that generating the language $L(G) - \{ \land \}$ G has productions

$$S \rightarrow ABA, A \rightarrow aA/A, B \rightarrow bB/A$$

- (ii) Give the top down PDA for palindrom.
- (iii) For the following FA, use the minimization algorithm to find a minimum. State FA recognizing the same language.

(iv) For the given regular expression draw NFA-A, NFA and FA.

4. Do as directed:

20

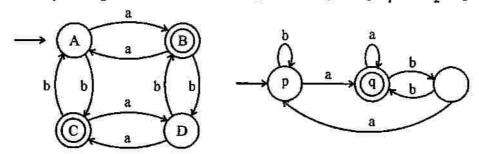
Show that the given grammar is ambiguous and find an equivalent unambiguous grammar.

$$S \rightarrow A/B$$
 $A \rightarrow aAb/ab$ $B \rightarrow abB/A$

(ii) A transition table is given for an NFA-A with seven states.

q	δ(q, a)	δ(q, b)	δ(q, ^)
1	{5}	φ	{4}
2	{1}	ф	φ
3	φ ,	{2}	<u></u>
4	ф	{7}	{3}
5	ф	φ	{1}
6	φ	{5}	{4}
7	- {6}	ф	ф

Find (a) $\land (\{2,3\})$

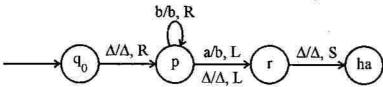

(b)
$$\delta^*$$
 (1, ba)

- (iii) Draw and describe Turring machine for n mod 4.
- (iv) Give transition table and transition diagram for the language of odd-length palindromes.

5. Do as directed:

20

(i) Let m₁ and m₂ be the FAs shown in figures, recognizing L₁ and L₂ respectively.


Draw NFA- Λ_s recognizing each of the following languages:

- (a) $L_1L_1L_2$
- (b) $L_1 \cup L_2$
- (ii) Find a CFG generating the given languages:
 - (a) The set of odd length strings in {a, b}* with middle symbol a
 - (b) The set of even length strings in {a, b}* with the two middle symbols equal.
- (iii) Give transition table and transition diagram for DPDA recognizing language $L = \{n \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$
- (iv) For each of the following regular expressions, draw an FAs recognizing the corresponding language.
 - (a) $(111 + 100)^*0$
 - (b) $(0+1)^*(1+00)(0+1)^*$

6. Do as directed:

20

(i) Explain Universal Turring Machining and encode the given Turring Machine.

- (ii) Let L be the language $\{0^n 1^n / n \ge 0\}$.
 - (a) Find two distinct strings x and y that are indistinguishable with respect to L.
 - (b) Show that L is not regular, by showing that there is an infinite set of strings, any two of which are distinguishable with respect to L.
- (iii) Write short notes on the following:
 - (a) Derivation tree and Ambiguity with reference to CFG.
 - (b) Pumping Lemma for CFL.

- (iv) Answer the following questions:
 - (a) Discuss P problem, NP problem, PSPACE and NPSPACE.
 - (b) Give the recursive definition of
 - (1) The set of natural numbers
 - (2) The set of positive integers divisible by 2 or 7
- 7. Do as directed:

20

- (i) Find CFG generating each of the given languages:
 - (a) $L = \{ a^i b^j / i \le 2j \}$
 - (b) $L = \{ a^i b^j c^k / i = j \text{ or } i = k \}$
- (ii) Give transition table and transition diagram for DPDA recognizing the following grammar:

$$S \rightarrow SS \mid \{S\} \mid [S] \mid \land$$

- (iii) Answer the following questions:
 - (a) Assume L_1 , $L_2 \subseteq \epsilon^*$ are regular languages, define Union $(L_1 \cup L_2)$, intersection $(L_1 \cap L_2)$ and difference $(L_1 L_2)$ of them.
 - (b) State the applications of Computational Theory.
- (iv) Answer the following questions:
 - (a) Explain decision problems.
 - (b) What do you understand by strong principle of mathematical induction? How it is different from mathematical induction? Give an example of a statement where you require strong principle of mathematical induction.