\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Sem-II Examination July 2010

Subject code: 620007
 Subject Name: Theory of Computation
 Time: 11.00 am - 01.30 pm
 Total Marks: 70

Date: 09 / 07 /2010

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4.

Q. 1 (a) Define surjection, injection and bijection. 05
(b) Explain : $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{p} \rightarrow \mathrm{q}$. 05
(c) Find regular expression for 04
(i) Only two 0 and 1 in any order.
(ii) String doesn't end with 11.
Q. 2 (a) Give recursive definition for

Set of all strings in $\{0,1\}^{*}$ containing substring 00 .
(b) Prove that if either of a and b is even number the $\mathrm{a} * \mathrm{~b}$ is even number. 03
(c) Draw FA to recognize the following languages defined over $\{0,1\}^{*}$. 07
(i) $(0+1) *(110)$
(ii) Language containing string of exactly two zeros.

OR

(c) Find languages corresponding to following CFG production.
(i) $\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}|^{\wedge}$
(ii) $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}$
(iii) $\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}|^{\wedge}$
Q. 3 (a) Given that $\mathrm{L} 1=\left\{\mathrm{x} \in(0,1)^{*} \mid \mathrm{x}\right.$ ends with 01$\}$

$$
\mathrm{L} 2=\left\{\mathrm{x} \in(0,1)^{*} \mid \mathrm{x} \text { ends with } 11\right\}
$$

Give FA for L1, L2 and L1 U L2.
(b) Define NFA and 6* for NFA.

OR

Q. 3 (a) Find minimal FA for following FA.

$$
\mathrm{Q}=\{1,2,3,4,5,6\} \quad \mathrm{A}=\{3,6\} \quad \text { and } \mathrm{q} 0=1
$$

State	input -a	input -b
1	2	6
2	1	3
3	2	4
4	4	2
5	4	5
6	5	4

[^0]Q. 4 (a) Let $\mathrm{M}=\left(\mathrm{Q}, \sum, \mathrm{q} 0, \sigma, \mathrm{~A}\right)$ where $\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{q} 0=\mathrm{a}$ and $\mathrm{A}=\{\mathrm{d}\}$ and σ is
given as follows.

State	input - 0	input-1
a	\{b, d\}	\{c,d\}
b	\{b \}	\{d \}
c	\{d\}	\{c\}
d	Φ	Φ

Give transition diagram for above NFA \& find whether string 100101 will be accepted by it or not.
(b) Give transition table for deterministic PDA recognizing following languages.

OR

Q. 4 (a) Let NFA - ^ machine $\mathrm{M}=\left(\mathrm{Q}, \sum, \mathrm{q} 0, \sigma, \mathrm{~A}\right)$ where $\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{A}=\{\mathrm{d}\}$ and σ is given as follows.

State	input - 0	input -1	\wedge
a	\{d\}	\{c, d\}	\{b\}
b	\{b $\}$	\{d\}	\{c \}
c	\{d\}	\{c\}	\{a\}
d	Ф	Φ	Φ

Find equivalent NFA and FA for above NFA - \wedge.
(b) Draw Turing machine to accept palindromes over $\{\mathrm{a}, \mathrm{b}\}$.
Q. 5 (a) Consider CFG with production

$$
S \rightarrow S+S|S-S| S * S|S / S|(S) \mid a
$$

Draw derivation trees corresponding to two different left most derivation of $a+(a * a) / a-a$.
(b) Write a short note on recursive enumerable and recursive language.
(c) Construct Turing machine to reverse a string.

OR

Q. 5 (a) Convert following grammar into Chomsky normal form.
$\mathrm{S} \rightarrow$ AACD
$\left.\mathrm{A} \rightarrow \mathrm{aAb}\right|^{\wedge}$
$\mathrm{C} \rightarrow \mathrm{aC} \mid \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}|^{\wedge}$
(b) Define \& describe PDA. 05
(c) Draw NFA - \wedge corresponding to following regular expression over $\sum=\{0,1\}$.

$$
010^{*}+0(01+10)^{*} 11
$$

[^0]: (b) Explain NFA $-\wedge$. What are different kind of non-determinism possible in NFA - ^? Also define ${ }^{\wedge}$ closure.

