Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Sem-II Examination July 2010

Subject code: 620007

Subject Name: Theory of Computation

Date:	09/	Subject Name: Theory of Computation Time: 11.00 am $-$ 01.30 pm						
Dutor		Total Marks: 70						
Inst	ructi	ions:						
	1.	Attempt all questions.						
	2.	Vake suitable assumptions wherever necessary.						
	4 .	Figures to the fight indicate full marks.						
Q.1	(a)	Define surjection, injection and bijection.	05					
	(b)	Explain : $p \rightarrow q$ and $p \rightarrow q$.	05					
	(c)	Find regular expression for	04					
		(1) Only two 0 and 1 in any order. (ii) String doesn't and with 11						
0.2	(a)	Give recursive definition for	04					
	()	Set of all strings in $\{0,1\}^*$ containing substring 00.	•••					
	(b)	Prove that if either of a and b is even number the a*b is even number.	03					
	(c)	Draw FA to recognize the following languages defined over $\{0,1\}^*$.	07					
		$(1) (0+1)^*(110)$						
		(11) Language containing string of exactly two zeros.						
	(c)	Find languages corresponding to following CFG production.	07					
	(-)	(i) $S \rightarrow aSa bSb ^{-1}$						
		(ii) $S \rightarrow aS \mid bS \mid a$						
		(iii) $S \rightarrow aSb bSa ^{$						
03	(a)	Given that I 1 = $\{x \in (0,1)^* \mid x \text{ ends with } 01\}$	07					
Q .0	(a)	$L2 = \{x \in (0,1)^* \mid x \text{ ends with } 01\}$	07					
		Give FA for L1, L2 and L1 U L2.						
	(b)	Define NFA and 6* for NFA.	07					
0.2	(2)	OR Find minimal EA for following EA	07					
Q.3	(a)	Find minimal FA for following FA.	07					
		$Q=\{1,2,3,4,5,6\}$ A= $\{3,6\}$ and $q0=1$						
		State input – a input -b						
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
		$ \frac{1}{4} $ $ \frac{1}{4} $ $ \frac{1}{2} $						
		5 4 5						
		6 5 4						

(b) Explain NFA - ^ . What are different kind of non-determinism possible in 07 NFA - ^ ? Also define ^ closure.

4

5

5 6

State	1nput – 0	input - I
a	{b,d}	{c,d}
b	{b}	{d}
c	{d}	{c}
d	Φ	Φ
c d	$ \begin{cases} d \\ \Phi \end{cases} $	{c} Φ

Give transition diagram for above NFA & find whether string 100101 will be accepted by it or not.

(b) Give transition table for deterministic PDA recognizing following languages. 07 $\{x \in (a,b)^* \mid Na(x) > Nb(x)\}$

OR

(a) Let NFA - $^{\text{nuchine }}M=(Q, \Sigma, q0, \delta, A)$ where $Q=\{a,b,c,d\}$ and $A=\{d\}$ and Q.4 07 б is given as follows.

State	input – 0	input -1	Λ
a	{d}	{c,d}	{b}
b	{b}	{d}	{c}
c	{d}	{c}	{a}
d	Φ	Φ	Φ
Find e	quivalent NF	A and FA for	above NFA - ^.

(b) Draw Turing machine to accept palindromes over {a, b}. 07

Q.5	(a)	Consider CFG with production	05
		$S \rightarrow S+S \mid S-S \mid S*S \mid S/S \mid (S) \mid a$	
		Draw derivation trees corresponding to two different left most derivation of $a + (a * a) / a - a$.	
	(b)	Write a short note on recursive enumerable and recursive language.	05
	(c)	Construct Turing machine to reverse a string.	04
		OR	
Q.5	(a)	Convert following grammar into Chomsky normal form.	05
		$S \rightarrow AACD$	
		$A \rightarrow aAb ^{\wedge}$	
		$C \rightarrow aC \mid a$	
		$D \rightarrow aDa bDb ^{\wedge}$	
	(b)	Define & describe PDA.	05
	(c)	Draw NFA - $^{\circ}$ corresponding to following regular expression over $\Sigma = \{0,1\}$.	04
		010*+0(01+10)*11	

07