Download Model question papers & previous years question papers
Posted Date: 01 Apr 2008 Posted By:: Atul Member Level: Gold Points: 5 (Rs. 1)

2007 Anna University Chennai B.E Civil Engineering NUMERICAL METHODS Question paper
MODEL PAPER B.E. DEGREE EXAMINATION. Fourth Semester Civil Engineering MA 038 — NUMERICAL METHODS (Common to Mechanical, Instrumentation and Control Engineering, Aeronautical, Automobile, Production, Instrumentation and Mechatronics Engineering) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A — (10 ´ 2 = 20 marks) What is the order of convergence of Newton–Raphson method? Compare Gaussian elimination and Gauss–Jordon methods in solving the linear system . Given , use to show that . What is the order of interpolating polynomial could be constructed, if n sets of are given? Find , using Newton’s forward difference interpolation. What is the geometrical meaning of trapezoidal rule? What is single step method? Give examples. How do you apply Runge–Kutta method of order form to solve , and ? What is the order of convergence of Crank–Nicolson method for solving parabolic partial differential equation subject to , and ? Write down the finite difference scheme for solving the Poisson equation on with for where denotes the boundary of . PART B — (5 ´ 16 = 80 marks) (i) Using iterative method, find the root of in [1, 2]. (6) (ii) Solve the following system by applying first two iterations by Gauss–Jacobi method and continue using the Gauss Seidel method. (10) . (a) (i) Approximate using the following data and the Newton’s forward difference formula : : 0.0 0.2 0.4 0.6 0.8 ( ) : 1.0000 1.22140 1.49182 1.82212 2.22554 (ii) Use the Newton’s backward difference formula to approximate (0.65). (iii) Use Stirlings formula to approximate (0.43). Or (b) (i) Derive the Lagrange’s interpolation for unequal intervals. (6) (ii) Find an approximate polynomial using Hermite’s interpolation. (10) ( ) ( ) 0.8 0.22363 2.16918 1.0 0.658091 2.04669 (a) (i) Given the following table of values of and : : 1.0 1.05 1.10 1.15 1.20 1.25 1.30 : 1.0000 1.0247 1.0488 1.0723 1.0954 1.1180 1.1401 find and at = 1.00, 1.25 and 1.15. (10) (ii) Estimate the length of arc of the curve 3 = from (0, 0) to using Simpson’s rule taking 4 subintervals. (6) Or (b) (i) For the following values of and , find the first derivative at = 4. (6) : 1 2 4 8 10 : 0 1 5 21 27 (ii) Evaluate by trapezoidal rule with = = 0.5. (6) (iii) Evaluate by two point Gaussian quadrature. (4) (a) Solve with (i) Use Taylor series at x = 0.2 and x = 0.4 (4) (ii) Use Runge–Kutta method of order 4 at x = 0.6 (6) (iii) Use Adam–Bashforth predictor–corrector method at x = 0.8. (6) Or (b) (i) Using Taylor series method, solve with , for x = 0.2 and x = 0.4. (8) (ii) Also solve the problem using Runge–Kutta method to find (8) (a) (i) Solve using (12) (ii) Derive the Crank–Nicolson finite difference scheme for solving the parabolic equation t > 0 and (4) Or (b) (i) Derive the explicit finite difference scheme for solving the one dimensional hyperbolic equation subject to and (6) (ii) Solve subject to and with and using Schmidt method for 2 time steps. (10)
———————
Return to question paper search


Submit Previous Years University Question Papers and
make money from adsense revenue sharing program
Are you preparing for a university examination? Download model question papers
and practise before you write the exam.