Biju Patnaik University of Technology B.Tech/OPTIMIZATION IN ENGINEERING model question papers



Download Model question papers & previous years question papers

Posted Date: 08 Jan 2011      Posted By:: Abhishek Samrat    Member Level: Silver  Points: 5 (₹ 1)

2010 Biju Patnaik University of Technology B.Tech. Information Technology B.Tech/OPTIMIZATION IN ENGINEERING Question paper



Course: B.Tech. Information Technology   University/board: Biju Patnaik University of Technology





1.Answer the following question:

(a) Define a linear programing problem in standard form.
(b) Define basic feasible solution and optimal solution of linear programming problem.
(c) Write an application of linear programming.
(d) Explain Stepping Stone method of transportation problem.
(e) What are the advantages of MODI method of transportation problem.
(f) Explain primal programme and dual programme.
(g) What is sensitive analysis ?
(h) Write an application of integer programming.
(i) What is Fibonacci search?
(j) State Kuhn-Tucker conditions in non-linear programming.

2. A manufacturer of wooden articles produces tables and chairs which require two types of inputs namely ,they being wood and labour. The manufacturer knows that for a table 3 units of wood and 1
unit of labour are required while for a chair they are 2 units each.The profit from each table is Rs.20 while it is Rs.16 for each chair.The total available resources for the manufacturer are 150 units wood and 75 units of labour.The manufacturer wants to maximize his profit by distributing his resources for
tables and chairs.Formulate the problem as linear programming problem.

3.Solve the following linear programming graphically:
Minimize z=2x1+x2
Subject to
x1 + x2 >=1,
x1 + 2x2 <=10,x2<=4
and x1>=0,x2>=0.5.

3.Use simplex method to solve following linear programming problem:
Maximize z=x1+2x2
Subject to:
-x1+2x2<=8,
x1+2x2<=12,
x1-2x2<=3,
x1>=0 and x2>=0

4. Solve the following integer programming problem using branch and bound method :
Maximize z=6x1+8x2
Subject to the conditions
4x1+16x2<=32
14x1+4x2<=28,
x1,x2>=0 and are integers.

5. Obtain the set of necessary conditions for the non-linear programming problem:
Maximize z=x1^2+3x2^2 +5x3^2
Subject to the constraints:
x1+x2+3x3=2,
5x1+2x2+x3=5,
and x1,x2,x3 >=0.

6. Find the dimension of rectangular parallelopiped with largest volume whose sides are parallel to
the coordinate planes,to be inscribed in the ellipsoid
g(x,y,z)=x^2/a^2 + y^2/b^2 + z^2/c^2 -1=0.

7. Derive the optimal solution from the Kuhn-Tucker conditions for the problem :
Minimize z=2x1 + 3x2 - x1^2 -2x2^2
Subject to the conditions:
x1 + 3x2 <=6,
5x1 + 2x2 <=10,
x1,x2>=0





Return to question paper search

Next Question Paper: Artificial intelligence

Previous Question Paper: M.A. Degree Examiniation (History), Acharya Nagarjuna Open University

Related Question Papers:


  • B.Tech,PCCS4301/COMPUTER ORGANIZATION


  • B.Tech PCCS4302/ DATA COMMUNICATION AND COMPUTER NETWORKS


  • 1st Semester Programming C 2007


  • 1st Semester Thermodynamics 2009


  • Organizational Behaviour 3rd Semester 2005


  • Categories


    Submit Previous Years University Question Papers and make money from adsense revenue sharing program

    Are you preparing for a university examination? Download model question papers and practise before you write the exam.


    Looking for University or College admissions in India for 2021 - 2022 Academic Year?

    APPLY NOW
    Top Contributors
    TodayLast 7 Daysmore...

    Awards & Gifts
     
    SpiderWorks Technologies Pvt Ltd, Kochi - India. © All Rights Reserved.